Featured Research

from universities, journals, and other organizations

Have I Been Here Before? Neuronal Mechanism Could Help Explain Déjà-vu

Date:
June 8, 2007
Source:
University of Bristol
Summary:
"Have I been here before?" In today's fast-moving world of look-alike hotel rooms and comparable corridors, it can take a bit of thinking to answer this simple question. Scientists say that they have identified a neuronal mechanism that our brains may use to rapidly distinguish similar, yet distinct places.

Dentate gyrus pattern.
Credit: Matt Jones

"Have I been here before"? In today's fast-moving world of look-alike hotel rooms and comparable corridors, it can take a bit of thinking to answer this simple question. University of Bristol neuroscientists working with colleagues at the Massachusetts Institute of Technology (MIT) report in the June 7 early online edition of Science that they have identified a neuronal mechanism that our brains may use to rapidly distinguish similar, yet distinct places. The discovery may help explain the sensation of déjà vu.

The work could lead to treatments for memory-related disorders, as well as for the confusion and disorientation that plague elderly individuals who have trouble distinguishing between separate but similar places and experiences.

Forming memories of places and contexts in which episodes occur engages a part of the brain called the hippocampus. The laboratory of Nobel Laureate, Susumu Tonegawa, Picower Professor of Biology and Neuroscience at MIT, has been exploring how each of the three hippocampal subregions-the dentate gyrus, CA1 and CA3-contribute uniquely to different aspects of learning and memory. In the current study, co-authors Matthew Jones, Research Councils UK (RCUK) Academic Fellow in the Department of Physiology at the University of Bristol and Dr Thomas McHugh, a Picower Institute research scientist, have revealed that the learning in the dentate gyrus is crucial in rapidly recognizing and amplifying the small differences that make each place unique.

Dr Jones, commenting on the paper, said: "We constantly make split-second decisions about how best to behave at a given place and time. To achieve this, our nervous system must employ highly efficient ways of rapidly recognising and learning important changes in our environment.

"This paper demonstrates that a particular protein signalling molecule (the NMDA receptor) in a particular network of brain neurons (the dentate granule cells of the hippocampus) is essential for these rapid discrimination processes, hopefully paving the way for therapies targeting learning and behavioural disorders."

Professor Tonegawa, a frequent world traveler, describing his own occasional experience of finding the airport in a new city uncannily familiar, added: "This occurs because of the similarity of the modules-gates, chairs, ticket counters-that define the context of an airport. It is only by seeking out unique cues that the specific airport can be identified."

Researchers believe that a set of neurons called 'place cells' fire to provide a sort of blueprint for any new space we encounter. The next time we see the space, those same neurons fire. Thus we know when we've been somewhere before and don't have to relearn our way around familiar turf. But similar spaces may activate overlapping neuronal blueprints, leaving room for confusion if the neurons are not fine-tuned.

In this study, the researchers used a line of genetically altered mice to pinpoint how the dentate gyrus contributes to the kind of pattern separation involved in identifying new and old spaces. Whilst the mice behaved normally in most situations, they became confused when required to discriminate between different spaces. This may model the difficulties in forming distinct memories for similar but distinct places and experiences that afflicts some elderly individuals.

In addition to Dr Matthew Jones, Professor Susumu Tonegawa and Dr Thomas McHugh, authors include Matthew Wilson, Picower Scholar and Professor; and colleagues from the University of California at Los Angeles and Beth Israel Deaconess Medical Center in Boston.

This work was supported by the National Institute for Mental Health and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Cite This Page:

University of Bristol. "Have I Been Here Before? Neuronal Mechanism Could Help Explain Déjà-vu." ScienceDaily. ScienceDaily, 8 June 2007. <www.sciencedaily.com/releases/2007/06/070607171112.htm>.
University of Bristol. (2007, June 8). Have I Been Here Before? Neuronal Mechanism Could Help Explain Déjà-vu. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2007/06/070607171112.htm
University of Bristol. "Have I Been Here Before? Neuronal Mechanism Could Help Explain Déjà-vu." ScienceDaily. www.sciencedaily.com/releases/2007/06/070607171112.htm (accessed August 1, 2014).

Share This




More Mind & Brain News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Google (Kind Of) Complies With 'Right To Be Forgotten Law'

Newsy (July 31, 2014) — Google says it is following Europe's new "Right To Be Forgotten Law," which eliminates user information upon request, but only to a certain degree. Video provided by Newsy
Powered by NewsLook.com
Stroke Signs: Three Hour Deadline

Stroke Signs: Three Hour Deadline

Ivanhoe (July 31, 2014) — Sometimes the signs of a stroke are far from easy to recognize. Learn from one young father’s story on the signs of a stroke. Video provided by Ivanhoe
Powered by NewsLook.com
Grain Brain May Be Harming Us

Grain Brain May Be Harming Us

Ivanhoe (July 31, 2014) — Could eating carbohydrates be harmful to our brain health? Find out what one neurologist says about changing our diets. Video provided by Ivanhoe
Powered by NewsLook.com
Playground Tales: Learning to Socialize With Autism

Playground Tales: Learning to Socialize With Autism

Ivanhoe (July 31, 2014) — Playgrounds are typically great places where kids can have fun while learning how to interact with other kids, but for some kids with autism, they can have the reverse effect. Hear how researchers are trying to change that. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins