Featured Research

from universities, journals, and other organizations

Nanotube Flickering Reveals Single-molecule Rendezvous

Date:
June 9, 2007
Source:
Rice University
Summary:
Scientists describe a new technique that allowed them to zoom in and observe quantum quasiparticles called excitons on individual carbon nanotubes. The team found that each exciton travels about 90 nanometers and visits around 10,000 carbon atoms during its 100-trillionth-of-a-second lifespan.

In the quantum world, photons and electrons dance, bump and carry out transactions that govern everything we see in the world around us. In this week's issue of Science, French and U.S. scientists describe a new technique in nanotechnology that allowed them to zoom in -- way in -- and observe those quantum transactions on a single DNA-sized carbon molecule called a nanotube.

Related Articles


The team, led by Rice University chemist Bruce Weisman and University of Bordeaux physicist Laurent Cognet, focused on short-lived quantum oddities called "excitons," which are created when light hits a semiconductor.

"Excitons in carbon nanotubes only last about 100 trillionths of a second," Weisman said. "They wink out of existence when the nanotube emits a photon of fluorescent light, but during their short lifetimes they can move around."

To study exciton mobility on nanotubes, Cognet and his co-workers conducted experiments during a sabbatical visit to Weisman's lab at Rice in early 2007. They used a fluorescence microscope to observe tiny sections of individual nanotubes less than a micrometer long. The nanotubes were held still in a soft liquid gel. By shining light on them while introducing acids and other chemicals into the gel, the team was able to observe reactions that would quench, or kill, any passing excitons. To do this, they used a time-lapse infrared camera to capture the fluorescent glow from the nanotube about 20 times a second. They then compiled records that revealed the characteristic steps that are the signature of exciton quenching by single molecules.

"We found that each nanotube exciton travels about 90 nanometers and visits some 10,000 carbon atoms during its lifespan," Cognet said.

Excitons are "quasiparticles" created when a photon strikes a semiconductor and excites an electron to a higher energy level. The electron leaves behind a positively charged void called a "hole." That hole pairs with the electron to form the exciton, which takes on a life of its own that ends abruptly when it emits a photon or becomes quenched.

Cognet said the unusual electronic properties of carbon nanotubes made them a unique system to observe single-molecule reactions.

"Nanotubes provided us a very stable baseline for our measurements," he said. "No other light-emitting molecules have the properties that we needed for this experiment."

Weisman helped found the field of nanotube spectroscopy with the 2002 discovery of nanotube fluorescence and subsequent research that classified the light signatures of dozens of types of semiconducting nanotubes.

"I was impressed at the speed and quality of the work that Dr. Cognet and the team produced during this project," said Weisman, professor of chemistry. "His visit to Rice has been extremely productive."

Research co-authors include: James Tour, Chao Professor of Chemistry; Dmitri Tsyboulski, Evans Attwell Postdoctoral Fellow; and graduate students John-David Rocha and Condell Doyle.

The research was funded by CNRS (France), the Fulbright Foundation, the Welch Foundation, NASA, Applied NanoFluorescence, LLC, the National Science Foundation, Rice's Center for Biological and Environmental Nanotechnology, and the Rice-Houston Alliance for Graduate Education and the Professoriate.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Nanotube Flickering Reveals Single-molecule Rendezvous." ScienceDaily. ScienceDaily, 9 June 2007. <www.sciencedaily.com/releases/2007/06/070607171126.htm>.
Rice University. (2007, June 9). Nanotube Flickering Reveals Single-molecule Rendezvous. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2007/06/070607171126.htm
Rice University. "Nanotube Flickering Reveals Single-molecule Rendezvous." ScienceDaily. www.sciencedaily.com/releases/2007/06/070607171126.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins