Featured Research

from universities, journals, and other organizations

Potential Role For Retinoic Acid In Autoimmune And Inflammatory Diseases Identified

Date:
June 18, 2007
Source:
La Jolla Institute for Allergy and Immunology
Summary:
An important finding, which could eventually lead to a new therapeutic approach for treating autoimmune and inflammatory diseases such as rheumatoid arthritis, colitis, psoriasis and others, was recently announced. The studies, conducted in laboratory mice, demonstrated the role of retinoic acid, a substance derived when vitamin A is broken down in the body, in regulating inflammation.

An important finding, which could eventually lead to a new therapeutic approach for treating autoimmune and inflammatory diseases such as rheumatoid arthritis, colitis, psoriasis and others, was announced today by researchers at the La Jolla Institute for Allergy & Immunology (LIAI). The studies, conducted in laboratory mice, demonstrated the role of retinoic acid, a substance derived when Vitamin A is broken down in the body, in regulating inflammation.

In these studies, published in the journal Science, the LIAI researchers showed that by manipulating the amount of retinoic acid in mice, they could affect the number of pro-inflammatory T cells, a type of white blood cell responsible for several autoimmune and inflammatory diseases. The finding is an important first step that, if eventually found to be true in humans, points to the potential of a new avenue of therapies using retinoic acid to treat these diseases.

"What's exciting about this finding is they've found that retinoic acid plays a role in modulating the switch between these two distinct (T cell) lineages -- the induced regulatory T cells, which are anti-inflammatory, and the TH-17 lineage, which promotes inflammatory responses, " said Casey Weaver, M.D., a University of Alabama, Birmingham, professor and prominent immunology researcher, who was key in the discovery of TH-17 in 2005.

Further, Dr. Weaver said, the LIAI researchers had developed a "mechanism by which you can prevent the development of the (inflammatory) lineage. This is very exciting because it provides a potential pharmacological application for this finding."

The LIAI team tested three approaches with retinoic acid. In one model, they injected the mice with retinoic acid, essentially giving them more of the substance than they would have through normal body processes. This suppressed the formation of pro-inflammatory T cells in the intestines of the mice, demonstrating that increases in retinoic acid reduced inflammation. In another approach, designed to test how reducing retinoic acid would affect inflammation, the team used an inhibitor to block retinoic acid in the mice.

This led to the decrease of anti-inflammatory T cells, showing that reducing retinoic acid increased inflammation. In a third, particularly exciting approach, the scientists treated T cells with retinoic acid in a test tube. When put back into the mice, these T cells prevented the formation of inflammatory T cells in the mice. This is especially noteworthy because combining the retinoic acid and T cells outside the body may avoid possible side effects that are more likely when scientists attempt to manipulate body processes internally.

"We found that you can control inflammation in a living animal with retinoic acid or you can treat cells with retinoic acid in a test tube and transfer them to the organism to suppress inflammation in vivo," said Dr. Cheroutre. "This may offer an important new avenue for treatment of autoimmune diseases like colitis and rheumatoid arthritis or other inflammatory diseases, as well as potentially providing a mechanism for the control of graft rejections, where you don't want the immune system to attack the grafted tissue."

The finding was published in a paper entitled "Reciprocal Th-17 and regulatory T cell differentiation mediated by retinoic acid." Hilde Cheroutre, Ph.D., led the research team, entirely from LIAI, in which Daniel Mucida, Ph.D., and Yunji Park, Ph.D., were key contributors.


Story Source:

The above story is based on materials provided by La Jolla Institute for Allergy and Immunology. Note: Materials may be edited for content and length.


Cite This Page:

La Jolla Institute for Allergy and Immunology. "Potential Role For Retinoic Acid In Autoimmune And Inflammatory Diseases Identified." ScienceDaily. ScienceDaily, 18 June 2007. <www.sciencedaily.com/releases/2007/06/070614151809.htm>.
La Jolla Institute for Allergy and Immunology. (2007, June 18). Potential Role For Retinoic Acid In Autoimmune And Inflammatory Diseases Identified. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2007/06/070614151809.htm
La Jolla Institute for Allergy and Immunology. "Potential Role For Retinoic Acid In Autoimmune And Inflammatory Diseases Identified." ScienceDaily. www.sciencedaily.com/releases/2007/06/070614151809.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins