Featured Research

from universities, journals, and other organizations

Gene Therapy Awakens The Brain Despite Blindness From Birth

Date:
June 26, 2007
Source:
University of Pennsylvania
Summary:
Researchers have demonstrated that gene therapy used to restore retinal activity to the blind also restores function to the brain's visual center, a critical component of seeing.

Researchers at the University of Pennsylvania have demonstrated that gene therapy used to restore retinal activity to the blind also restores function to the brain's visual center, a critical component of seeing. The multi-institutional study led by Geoffrey K. Aguirre, assistant professor of neurology in Penn's School of Medicine, shows that gene therapy can improve retinal, visual-pathway and visual-cortex responses in animals born blind and has the potential to do the same in humans.

"The retina of the eye captures light, but the brain is where vision is experienced," Aguirre said. "The traditional view is that blindness in infancy permanently alters the structure and function of the brain, leaving it unable to process visual information if sight is restored. We've now challenged that view."

The results support the potential for human benefit from retinal therapies aimed at restoring vision to those with genetic retinal disease. Researchers used functional MRI to measure brain activity in blind dogs born with a mutation in gene RPE65, an essential molecule in the retinoid-visual cycle. The same mutation causes a blindness in humans called Leber congenital amaurosis, or LCA. It is the first human eye-retinal disorder slated for gene therapy.

Gene therapy, performed by introducing a working copy of RPE65 into the retina, restored eye function in canines. Yet, it was previously unclear if the brain could "receive" the restored sight.

The team found that gene therapy to the eye dramatically increased responses to light within the visual cortex of the canine brain. The recovery of visual brain function occurred in a canine that had been blind for the first four years of its life, and recovery was found to persist in another dog for at least two-and-a-half years after therapy, suggesting a level of permanence to the treatment.

Penn scientists then studied the structure and function of the visual brain of human patients with the same form of blindness. Young adults with blindness from RPE65 mutation had intact visual brain pathways with nearly normal structure. The Penn team also found that, while the visual cortex of these patients with LCA did not respond to dim lights, the brain's reaction to brighter lights was comparable to that of individuals with normal sight.

"It seems these patients have the necessary brain pathways ready to go if their eyes start working again," Aguirre said.

The results of the current study are critical to these human clinical trials, led at Penn's Scheie Eye Institute by Samuel G. Jacobson, professor of ophthalmology, and Artur V. Cideciyan, research associate professor of ophthalmology.

"Existence of functional potential both in the eye and brain are prerequisites for successful gene therapy in all forms of LCA," Cideciyan said. "In the RPE65 form of the disease, we now have evidence for both, and treatment at the retinal level has the hope of recovery of useful vision in patients."

Findings of the study were reported in the journal PLoS Medicine.

The study was conducted by Aguirre and Marc Korczykowski of the Department of Neurology in Penn's School of Medicine; Cideciyan, Tomas S. Alemán, Alejandro J. Roman and Samuel G. Jacobson of the Department of Ophthamology; Brian B. Avants and James C. Gee of the Department of Radiology; David H. Brainard of the Department of Psychology in Penn's School of Arts and Sciences; András M. Komáromy and Gustavo D. Aguirre of Penn's School of Veterinary Medicine; Gregory M. Acland of the Baker Institute of the College of Veterinary Medicine at Cornell University; and William W. Hauswirth of the University of Florida's Department of Ophthalmology, who created the vector used for the gene therapy.

The research was supported by the National Institutes of Health, the Foundation Fighting Blindness, the Macula Vision Research Foundation, The Chatlos Foundation, the Alcon Research Institute, the Ruth and Milton Steinbach Fund, the The ONCE International Prize for Research and Development in Biomedicine and New Technologies for the Blind, the Macular Disease Foundation and the Burroughs-Wellcome Fund.


Story Source:

The above story is based on materials provided by University of Pennsylvania. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania. "Gene Therapy Awakens The Brain Despite Blindness From Birth." ScienceDaily. ScienceDaily, 26 June 2007. <www.sciencedaily.com/releases/2007/06/070625205441.htm>.
University of Pennsylvania. (2007, June 26). Gene Therapy Awakens The Brain Despite Blindness From Birth. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2007/06/070625205441.htm
University of Pennsylvania. "Gene Therapy Awakens The Brain Despite Blindness From Birth." ScienceDaily. www.sciencedaily.com/releases/2007/06/070625205441.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) — The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) — A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) — British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins