Featured Research

from universities, journals, and other organizations

Critical Protein Prevents DNA Damage From Persisting Through Generations

Date:
July 2, 2007
Source:
Rockefeller University
Summary:
A protein called ATM, long known to be involved in protecting cells from genetic damage, is also part of a system that prevents damage from being passed on when the cells divide.

Disappearing act: Normal chromosomes are capped by complexes called telomeres (red), which act as buffers and lose a little bit of material every time the cell divides. When scientists looked at dividing immune system B cells that lacked the ATM protein, they saw that chromosome 12 (bottom left, green spots) was missing its telomeres, a defect commonly seen in lymphomas.
Credit: Image courtesy of Rockefeller University

A protein long known to be involved in protecting cells from genetic damage has been found to play an even more important role in protecting the cell's offspring. New research by a team of scientists at Rockefeller University, Howard Hughes Medical Institute and the National Cancer Institute shows that the protein, known as ATM, is not only vital for helping repair double-stranded breaks in DNA of immune cells, but is also part of a system that prevents genetic damage from being passed on when the cells divide.

Early in the life of B lymphocytes -- the immune cells responsible for hunting down foreign invaders and labeling them for destruction -- they rearrange their DNA to create various surface receptors that can accurately identify different intruders, a process called V(D)J recombination. Now, in an study published online today in the journal Cell, Rockefeller University Professor Michel Nussenzweig, in collaboration with his brother Andrι Nussenzweig at NCI and their colleagues, shows that when the ATM protein is absent, chromosomal breaks created during V(D)J recombination go unrepaired, and checkpoints that normally prevent the damaged cell from replicating are lost.

Normal lymphocytes contain a number of restorative proteins, whose job it is to identify chromosomal damage and repair it or, if the damage is irreparable, prevent the cell from multiplying. Earlier research by Andrι and Michel Nussenzweig, who is an investigator at HHMI, had identified other DNA repair proteins that are important during different phases of a B lymphocyte's life. It was during one of these studies, which examined genetic damage late in the life of a B cell, that they came across chromosomal breaks that could not be explained.

So the researchers began to look into the potential role of V(D)J recombination. "We were not expecting it to be responsible for the breaks we were seeing," says Michel, Sherman Fairchild Professor and head of the Laboratory of Molecular Immunology. "Because for it to be responsible, the breaks would have had to happen early on, the cell would have to divide, mature, maintain the breaks, and stay alive with broken chromosomes."

This, in fact, was precisely what they found.

The ATM protein appears to have two roles in a B cell: It helps repair the DNA double-strand breaks, and it activates the cell-cycle checkpoint that prevents genetically damaged cells from dividing. "ATM is required for a B cell to know that it has a broken chromosome. And if it doesn't know that it seems to be able to keep on going," says Michel.

Since the ATM protein is mutated in a number of lymphomas -- cancers of the lymph and immune system -- the new finding suggests to researchers that the lymphocytes could have been living with DNA damage for a long time, and that this damage likely plays a role in later chromosomal translocations, rearrangements of genetic materials that can lead to cancer.

Michel and his brother, who've been collaborators for more than a decade, intend to pursue the molecular mechanisms by which these chromosomal translocations occur. "I think it's important to understand them," he says, "because eventually we might be able to prevent these dangerous chromosome fusions."

This research was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Critical Protein Prevents DNA Damage From Persisting Through Generations." ScienceDaily. ScienceDaily, 2 July 2007. <www.sciencedaily.com/releases/2007/06/070628183251.htm>.
Rockefeller University. (2007, July 2). Critical Protein Prevents DNA Damage From Persisting Through Generations. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2007/06/070628183251.htm
Rockefeller University. "Critical Protein Prevents DNA Damage From Persisting Through Generations." ScienceDaily. www.sciencedaily.com/releases/2007/06/070628183251.htm (accessed September 22, 2014).

Share This



More Health & Medicine News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) — Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) — Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) — A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins