Featured Research

from universities, journals, and other organizations

How Plants Learned To Respond To Changing Environments

Date:
July 17, 2007
Source:
Norwich BioScience Institutes
Summary:
Scientists have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their life cycle such as germination and flowering, to take advantage of environmental conditions. They can also repress growth when their environment is not favorable. This involves many complex signalling pathways which are integrated by the plant growth hormone gibberellin.

A team of John Innes centre scientists lead by Professor Nick Harberd have discovered how plants evolved the ability to adapt to changes in climate and environment. Plants adapt their growth, including key steps in their life cycle such as germination and flowering, to take advantage of environmental conditions. They can also repress growth when their environment is not favourable. This involves many complex signalling pathways which are integrated by the plant growth hormone gibberellin.

Publishing in the journal Current Biology, the researchers looked at how plants evolved this ability by looking at the genes involved in the gibberellin signalling pathway in a wide range of plants. They discovered that it was not until the flowering plants evolved 300 million years ago that plants gained the ability to repress growth in response to environmental cues.

All land plants evolved from an aquatic ancestor, and it was after colonisation of the land that the gibberellin mechanism evolved. The earliest land plants to evolve were the bryophyte group, which includes liverworts, hornworts and ancestral mosses, many of which still exist today. The ancestral mosses have their own copies of the genes, but the proteins they make do not interact with each other and can't repress growth. However, the moss proteins work the same as their more recently evolved counterparts when transferred into modern flowering plants.

The lycophyte group, which evolved 400 million years ago, were the first plants to evolve vascular tissues - specialized tissues for transporting water and nutrients through the plant. This group of plants also have the genes involved in the gibberellin signalling mechanism, and the products of their genes are able to interact with each other, and the hormone gibberellin. However this still does not result in growth repression. Not until the evolution of the gymnosperms (flowering plants) 300 million years ago are these interacting proteins able to repress growth. This group of plants became the most dominant, and make up the majority of plant species we see today.

Evolution of this growth control mechanism appears to have happened in a series of steps, which this study is able to associate with major stages in the evolution of today's flowering plants. It also involves two types of evolutionary change. As well as structural changes that allow the proteins to interact, flowering plants have also changed the range of genes that are turned on and off in response to these proteins. This work was supported by the Biotechnology and Biological Sciences Research Council.

Reference: Step-by-Step Acquisition of the Gibberellin-DELLA Growth-Regulatory Mechanism During Land-Plant Evolution. Yuki Yasumura, Matilda Crumpton-Taylor, Sara Fuentes, and Nicholas P. Harberd. Current Biology 17, 1225-1230, July 17, 2007 DOI 10.1016/j.cub.2007.06.037


Story Source:

The above story is based on materials provided by Norwich BioScience Institutes. Note: Materials may be edited for content and length.


Cite This Page:

Norwich BioScience Institutes. "How Plants Learned To Respond To Changing Environments." ScienceDaily. ScienceDaily, 17 July 2007. <www.sciencedaily.com/releases/2007/07/070712134947.htm>.
Norwich BioScience Institutes. (2007, July 17). How Plants Learned To Respond To Changing Environments. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2007/07/070712134947.htm
Norwich BioScience Institutes. "How Plants Learned To Respond To Changing Environments." ScienceDaily. www.sciencedaily.com/releases/2007/07/070712134947.htm (accessed September 2, 2014).

Share This




More Plants & Animals News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins