Featured Research

from universities, journals, and other organizations

Wobbly Polarity Is Key To Preventing Magnetic Avalanches On Disk Drives

Date:
July 17, 2007
Source:
University of California - Santa Cruz
Summary:
New research brings models of magnetic avalanches much closer to reality, helping physicists understand both why they happen and why they don't run out of control, wiping disk drives clean.

Closeup of the platters and read/write head of a computer hard drive.
Credit: iStockphoto/Jim Jurica

Push two magnets together and you'll set off an avalanche of activity, forcing atoms on each magnet to align their polarity with the intruding magnetic field. It may sound like a party trick for physicists, but you do it every time you press "Save" on your computer.

Related Articles


New research brings models of magnetic avalanches much closer to reality, helping physicists understand both why they happen and why they don't run out of control, wiping disk drives clean. The research, by Joshua Deutsch, professor of physics at the University of California, Santa Cruz, and Andreas Berger, who did the research while at Hitachi Global Storage Technologies, appeared in the July 13 online edition of Physical Review Letters. The knowledge may help engineers design more reliable materials for disk drives.

Correcting even a single typo in an e-mail means changing dozens of bits of information. For each bit, a magnetic head grazes a tiny patch of your disk drive, forcing its polarity, or "spin," to align up or down--the magnetic equivalent of a one or a zero. The patch's polarity in many magnetic materials changes in a haphazard series of large and small jumps that physicists liken to an avalanche--though Deutsch's research shows it often behaves more like an explosion or runaway fire.

"The big advance in this paper is that in previous models of avalanches, the spin just flips from up to down as soon as they apply a magnetic field, and they're done. But that's not the way spin behaves in the real world," Deutsch said.

Deutsch and Berger realized that such an ideal model overlooked an effect, called spin precession, that each magnetic field exerts on its neighbors. They envisioned an individual bit of information as a tiny pincushion bristling with individual magnetic fields. As the disk drive head nears, each pin tends to wobble in a widening circle--pointing neither up nor down but somewhere in between--before it settles on its new polarity. That wobbling is called precession and resembles the way a spinning top draws out circles as it rotates.

"It takes around a few nanoseconds for a precession to die down," said Deutsch. "That's not that fast compared to computers today. It's not as fast as the time-scale you get for a transistor to switch." (A nanosecond is one-billionth of a second.) During that brief time, each magnetic field contributes forces that affect the precession of neighboring fields.

"There's a lot of stored energy in a magnet. It's sort of a battery in a way," Deutsch said. "As each spin flips from up to down, it liberates a small amount of energy that can do more work."

The combined effects can add up to a wave of energy that topples adjacent pins and spreads across the magnet's surface.

Deutsch and Berger suggested that one of the reasons that avalanches die down is because the magnetic material has an inherent ability to damp out the spin precession. The damping comes from the way the spins interact with their nonmagnetic surroundings, including electrons and minute vibrations called phonons.

Materials with poor damping are susceptible to long-running avalanches, and those with higher damping would be better candidates for use in disk drives. But all real materials feature much lower damping than the infinite damping assumed in previous models, Deutsch said.

"Obviously, disk drive makers have already learned by an enormous amount of ingenuity and trial and error what materials make good disks," Deutsch said. "But now we understand a lot better one of the reasons why--because the materials are good at damping, and we can quantify how damping will stop runaway avalanches. We still can't calculate their damping, but at least we can measure it."


Story Source:

The above story is based on materials provided by University of California - Santa Cruz. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Santa Cruz. "Wobbly Polarity Is Key To Preventing Magnetic Avalanches On Disk Drives." ScienceDaily. ScienceDaily, 17 July 2007. <www.sciencedaily.com/releases/2007/07/070716190833.htm>.
University of California - Santa Cruz. (2007, July 17). Wobbly Polarity Is Key To Preventing Magnetic Avalanches On Disk Drives. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2007/07/070716190833.htm
University of California - Santa Cruz. "Wobbly Polarity Is Key To Preventing Magnetic Avalanches On Disk Drives." ScienceDaily. www.sciencedaily.com/releases/2007/07/070716190833.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins