Featured Research

from universities, journals, and other organizations

New Method Of Adult Stem Cell Growth Treats Cornea Disorders

Date:
July 22, 2007
Source:
Basque Research
Summary:
A new method of adult stem cell growth has demonstrated its efficacy for its capacity to grow cornea stem cells. The scientists demonstrated applying the growth technique in treating diseases of the cornea, using stem cells, in 70 test animals (rabbits). The aim of the procedure was to regain the damaged epithelium and thus restore transparency to the cornea.

A new method of adult stem cell growth, designed in the Area of Cellular Therapy of the University Clinic (University of Navarra), has demonstrated its efficacy for its capacity to grow cornea stem cells. So Ana Fernández Hortelano, ophthalmologist at the Hospital demonstrated applying the growth technique in treating diseases of the cornea, using stem cells, in 70 test animals (rabbits). The aim of the procedure was to regain the damaged epithelium and thus restore transparency to the cornea.

In concrete, the thesis defended by doctor Fernández Hortelano at the Faculty of Medicine of the University of Navarra, proves the therapeutic efficiency in using corneal stem cells in patients with pathologies of the cornea, such as caustications or ocular herpes, by using stem cells from a healthy contralateral eye. The technique is being currently applied to patients with satisfactory results.

The research has two essential parts. On the one hand, it describes the design of a new method of cell growth and, on the other, explains the clinical application of the procedure.

Growth in two stages

The research undertaken by the ophthalmologist has shown that, from a small biopsy sample, the new growth technique enables the growth of the number of stem cells thus obtained to the point of obtaining sufficient for the treatment to be effective. The cell sample is taken from the limb of the healthy eye – the ocular structure responsible for the transparency of the cornea.

The importance of this growth method lies in the fact that it enables the characterisation of the cells obtained, i.e. determining the quantity and viability of the units to be used.

The method developed combines culture on a plastic chip with that of an amniotic membrane one. The novelty of the technique focuses on the first stage – where the plastic chip is used. The fragment of tissue obtained from the healthy eye divides into smaller fractions which are grown on the chip. Thus a greater number of halos of stem cells are obtained (as many as the fragments of tissue). A sample of the cells obtained are then sent the Anatomic Pathology laboratory where the viability and quality of the cell units are verified.

The cells are transferred to the amniotic membrane growth culture, one that is highly suitable when dealing with stem cells that are to be transplanted for ocular regeneration treatment.

Once in the amniotic membrane, the stem cells expand in a homogeneous manner, enabling a better cell identification in order to select the most suitable units for the treatment. This method permits finding out with precision the cell population that we are implanting in the eye and to verify, thereby, both the quality and quantity of the cells transplanted.

Clinical application

The second part of the research involved the clinical application of the adult stem cells transplant in rabbits, which previously have had an epithelial corneal lesion induced, causing loss of corneal transparency. This is a pathology that does not respond to a corneal transplant nor to other conventional treatment.

The procedure used by Dr Fernández Hortelano involved obtaining this type of cell – corneal stem cells – by means of a biopsy of cells from a healthy eye of the rabbit. This is a small sample of cells - 3 by 4 mm - and so the contrateral eye is not in danger. A tiny number of cells thus being involved, it is necessary to grow the samples in order to obtain greater numbers of cells, an expansion achieved by transferring the culture to the amniotic membrane.

The adult stem cells obtained are implanted in the damaged eye and the limb is regenerated, this leading to the recovery of the corneal epithelium and, thereby, the transparency of the cornea. The results to date achieved amongst the group of rabbits, with induced limbic insufficiency and which then had a transplant of adult stem cells, showed recovery of the corneal epithelium in 60% of the treated animals. The corneal epithelium is the layer that is damaged with limbic insufficiency, a problem which, in the long term, results in opacity of the cornea.


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Cite This Page:

Basque Research. "New Method Of Adult Stem Cell Growth Treats Cornea Disorders." ScienceDaily. ScienceDaily, 22 July 2007. <www.sciencedaily.com/releases/2007/07/070719100222.htm>.
Basque Research. (2007, July 22). New Method Of Adult Stem Cell Growth Treats Cornea Disorders. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2007/07/070719100222.htm
Basque Research. "New Method Of Adult Stem Cell Growth Treats Cornea Disorders." ScienceDaily. www.sciencedaily.com/releases/2007/07/070719100222.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) — Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) — The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) — A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) — All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins