Featured Research

from universities, journals, and other organizations

New Tool Makes Ultrasound Images Clearer

Date:
July 25, 2007
Source:
University of Virginia
Summary:
Scientists have developed a new tool -- an advanced imaging algorithm -- that is, quite literally, transforming the way we see things. The team has created an innovative method of signal processing that can be used with a broad range of imaging and sensing systems including ultrasound, RADAR, SONAR, telecommunications, and even a few optical imaging systems.

About Interactive Supercomputing Interactive Supercomputing (ISC) launched in 2004 to commercialize Star-P, an interactive parallel computing platform. With automatic parallelization and interactive execution of existing desktop technical applications, Star-P merges two previously distinct environments - desktop computers and high performance servers - into one. Based in Waltham, Mass., the privately held company markets Star-P for a range of biomedical, financial, and government laboratory research applications.
Credit: Image courtesy of University of Virginia

University of Virginia Engineering School Associate Professor William F. Walker and Research Associate Francesco Viola have developed a new tool — an advanced imaging algorithm — that is, quite literally, transforming the way we see things.

Together with graduate student Michael A. Ellis, biomedical engineering team has created an innovative method of signal processing that can be used with a broad range of imaging and sensing systems including ultrasound, RADAR, SONAR, telecommunications, and even a few optical imaging systems.

Called the Time-domain Optimized Near-field Estimator (TONE), this novel algorithm enhances the effectiveness of medical ultrasound imaging, providing medical professionals with dramatically improved image resolution and contrast.

In an ultrasound scanner, computer algorithms use reflected sound waves to create real-time images of the organ or tissue being examined. The images, however, aren’t always clear.

“For almost four decades, beamforming algorithms have been refined for RADAR and SONAR,” said Walker. “While these algorithms are tremendously powerful, they don’t generally translate well to medical ultrasound imaging.”

When screening for breast cancer or diagnosing other life threatening conditions using ultrasound technology, it is imperative that images are well-defined. Even so, clinical imaging specialists know that many patients simply “image poorly,” that is, images of their organs and tissues remain unclear.

“Off-axis signals — reflections coming from undesired locations — degrade images produced by current ultrasound systems” said Viola. “TONE reduces the contribution of these unwanted signals, thereby forming images with greatly increased contrast and resolution”

The team performed a series of simulations using sample ultrasound data to test the performance of this algorithm and compared it to conventional beamforming strategies (CBF) used by current ultrasound scanners. Imaging trials were conducted using wires (see attached illustration) suspended in water, a typical set up to test image resolution and contrast in medical ultrasound. The results show a significant improvement in spatial resolution over CBF.

The experiments were performed with technical support from Philips Medical Systems, a long-time collaborator of the U.Va. team.

The research team also enlisted the support of Interactive SuperComputing — and the company's product, Star-P, an interactive parallel computing platform — to tackle the computational complexity of the experiments.

According to Walker, the next step will involve using the TONE algorithm to image actual human tissue — the very place where this methodology could have the greatest impact.

“The potential applications for this algorithm are almost infinite,” said James H. Aylor, dean of U.Va.’s School of Engineering and Applied Science. “Not only can it be used in the medical community to benefit patients nationwide, but it will also have applications in the fields of radio astronomy, seismology and more.”

The research — funded by a grant from the U.S. Army Congressionally Directed Medical Research Program in Breast Cancer — is currently patent pending and will be published in a forthcoming issue of IEEE Transactions on Medical Imaging.


Story Source:

The above story is based on materials provided by University of Virginia. Note: Materials may be edited for content and length.


Cite This Page:

University of Virginia. "New Tool Makes Ultrasound Images Clearer." ScienceDaily. ScienceDaily, 25 July 2007. <www.sciencedaily.com/releases/2007/07/070722105030.htm>.
University of Virginia. (2007, July 25). New Tool Makes Ultrasound Images Clearer. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2007/07/070722105030.htm
University of Virginia. "New Tool Makes Ultrasound Images Clearer." ScienceDaily. www.sciencedaily.com/releases/2007/07/070722105030.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins