Featured Research

from universities, journals, and other organizations

New Lung Tumor-suppressor Gene Discovered

Date:
August 6, 2007
Source:
Dana-Farber Cancer Institute
Summary:
Scientists have found that a particular gene can block key steps of the lung cancer process in mice. The researchers report that LKB1 is not only a "tumor-suppressor" gene for non-small cell lung cancer in mice, it also may be more powerful than other, better-known suppressors.

Collaborating scientists in Boston and North Carolina have found that a particular gene can block key steps of the lung cancer process in mice.

Related Articles


The researchers report in the journal Nature that LKB1 is not only a "tumor-suppressor" gene for non-small cell lung cancer in mice, it also may be more powerful than other, better-known suppressors.

If further research shows LKB1 has a similar effect in human lung cells, it could influence the way non-small cell lung cancer is diagnosed and treated, says the study's senior author, Kwok-Kin Wong, MD, PhD, of Dana-Farber, one of three institutions, along with Massachusetts General Hospital and the University of North Carolina School of Medicine, leading the work. If tumors with LKB1 mutations are found to be especially fast-growing, for example, patients with such tumors might be candidates for more aggressive therapy.

People born with defective versions of LKB1 often develop Peutz-Jeghers syndrome, which is marked by intestinal growths and an increased risk for certain cancers. Non-inherited mutations of the gene have been found in some lung cancers. This suggested that LKB1 normally thwarts tumors from forming. Mutated versions may be unable to act as a brake on cancer.

To find out, the investigators ran a series of experiments in mice with a defective form of a gene called Kras, which drives the formation and growth of lung cancer. They tracked the development of lung cancer in animals with mutated LKB1 and compared it to the experience of animals with abnormalities in either of two well-known tumor-suppressor genes.

They found that while Kras "cooperated" with the mutated tumor-suppressor genes to produce lung cancer, it cooperated even more strongly with mutated LKB1. "The LKB1-deficient tumors grew more rapidly and spread more frequently than the others, and comprised all three types of non-small cell lung cancer -- squamous cell carcinoma, large-cell carcinoma, and adenocarcinoma -- rather than just one or two," Wong says. "This suggests that LKB1 plays a role at major stages of the tumors' development: initiation, differentiation of normal lung cells into cancer cells, and metastasis."

An examination of human non-small-cell lung tissue suggests LKB1 mutations play a role there as well. Of 144 samples analyzed, 34 percent of the lung adenocarcinomas and 19 percent of the squamous cell carcinomas contained abnormal versions of the gene, researchers report.

"We were surprised at how significant a role LKB1 mutations play in non-small cell lung cancer development in mice," say Wong, who is also an assistant professor of medicine at Harvard Medical School. "This suggests there may be additional lung tumor-suppressor genes yet to be discovered. We're currently examining whether these results apply to human lung cancers as well and, if so, how such information can improve treatment."

The study will be published on the journal Nature's web site on Aug. 5 and later in a print version.

The lead author of the study was Hongbin Ji, PhD, of Dana-Farber. Other Dana-Farber co-authors include Dongpo Cai, PhD, Liang Chen, PhD, Pasi Janne, MD, PhD, Bruce Johnson, MD, Jussi Koivunen, MD, PhD, Danan Li, Mei-Chih Liang, PhD, Kate McNamara, Matthew Meyerson, MD, PhD, Samanthi Perera, PhD, Geoffrey Shapiro, MD, PhD, and Takeshi Shimamura, PhD. Other authors were based at Children's Hospital Boston, Brigham and Women's Hospital, Broad Institute of Harvard University and Massachusetts Institute of Technology, University of Tennessee Health Science Center, and the University of Texas Southwestern Medical Center.

The research was supported by the National Institutes of Health, the Sidney Kimmel Foundation for Cancer Research, the American Federation of Aging, the Joan Scarangello Foundation to Conquer Lung Cancer, the Flight Attendant Medical Research Institute, the Waxman Foundation, the Harvard Stem Cell Institute, and the Linda Verville Foundation.


Story Source:

The above story is based on materials provided by Dana-Farber Cancer Institute. Note: Materials may be edited for content and length.


Cite This Page:

Dana-Farber Cancer Institute. "New Lung Tumor-suppressor Gene Discovered." ScienceDaily. ScienceDaily, 6 August 2007. <www.sciencedaily.com/releases/2007/08/070805161106.htm>.
Dana-Farber Cancer Institute. (2007, August 6). New Lung Tumor-suppressor Gene Discovered. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2007/08/070805161106.htm
Dana-Farber Cancer Institute. "New Lung Tumor-suppressor Gene Discovered." ScienceDaily. www.sciencedaily.com/releases/2007/08/070805161106.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins