Featured Research

from universities, journals, and other organizations

Preclinical Study Links Gene To Brain Aneurysm Formation

Date:
August 10, 2007
Source:
University of Cincinnati
Summary:
Neurovascular researchers have identified a gene that -- when suppressed or completely absent -- may predispose a person to brain aneurysms. They demonstrated that "knocking out" a gene known as endothelial nitric oxide synthase in an animal model led to intracranial aneurysm formation in 33 percent of study subjects. Scientists say this suggests that the gene may play an important role in the development of intracranial aneurysms.

The asterisk in this photo indicates signs of intracranial aneurysm in a preclinical subject.
Credit: Image courtesy of University of Cincinnati

University of Cincinnati (UC) neurovascular researchers have identified a gene that—when suppressed or completely absent—may predispose a person to brain aneurysms.

Related Articles


Todd Abruzzo, MD, and his colleagues demonstrated that “knocking out” a gene known as endothelial nitric oxide synthase (NOS-3) in an animal model led to intracranial aneurysm formation in 33 percent of study subjects.

Scientists say this suggests that the gene may play an important role in the development of intracranial aneurysms.

An aneurysm occurs when a blood vessel weakens and stretches, forming a bulge in the vessel wall that can rupture and hemorrhage. Intracranial arterial aneurysms are bulges that develop in the arteries that carry blood to the brain.

Previous studies have shown that variants of the NOS-3 gene are markers for vascular disease. The gene also plays an important role in remodeling of blood vessels in response to changes in blood flow.

“When a vessel experiences increased blood flow, it attempts to reduce the shear stress to even levels by enlarging its luminal caliber through a process known as remodeling. This involves reabsorbing the inner layers of the vessel wall and forming new outer layers to replace them,” explains Abruzzo.

“Although we don’t fully understand the genetic determinants that control an individual’s susceptibility to aneurysm formation,” he adds, “this study is an important clue because it links a known gene with a known function to an increased risk for intracranial aneurysm formation.”

Abruzzo says this study supports the idea that the NOS-3 gene is just one step in a complex molecular pathway that links flow-dependent vascular remodeling to intracranial aneurysm formation.

“Our findings suggest that if something goes wrong in the vascular remodeling process, it could trigger formation of an aneurysm,” he adds.

The UC-led team analyzed 30 female mice bred to suppress (knock out) one of three genes and molecular pathways associated with vascular disease: inducible nitric oxide synthase (NOS-2), endothelial nitric oxide synthase (NOS-3) or the plasminogen activator inhibitor (PAI-1).

To determine whether absence of the genes resulted in an increased rate of aneurysm formation, researchers blocked one of the two carotid arteries that carry blood to the brain. They then examined brain artery samples for signs of aneurysm formation.

The researchers found no indications of aneurysm formation in the PAI-1, NOS-2 or wild type control groups. Mice with the NOS-3 knock out, however, formed intracranial aneurysms.

Abruzzo reported these findings in the August 2007 issue of Current Neurovascular Research.

Collaborators in the study include UC's Ady Kendler, PhD, and Jane Khoury, PhD, Michael Workman, of Springfield Neurological and Spine Institute, Harry Cloft, MD, of Mayo Clinic and the late Robert Apkarian, PhD, of Emory University.

Abruzzo is affiliated with the Neuroscience Institute at UC and University Hospital, a center of excellence that focuses on the main diseases of the brain and nerves such as stroke, brain tumors, brain trauma, Parkinson’s and Alzheimer’s disease, epilepsy, ALS and multiple sclerosis.


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Preclinical Study Links Gene To Brain Aneurysm Formation." ScienceDaily. ScienceDaily, 10 August 2007. <www.sciencedaily.com/releases/2007/08/070807095320.htm>.
University of Cincinnati. (2007, August 10). Preclinical Study Links Gene To Brain Aneurysm Formation. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2007/08/070807095320.htm
University of Cincinnati. "Preclinical Study Links Gene To Brain Aneurysm Formation." ScienceDaily. www.sciencedaily.com/releases/2007/08/070807095320.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins