Featured Research

from universities, journals, and other organizations

Chemists Kill Cancer Cells With Light-activated Molecules

Date:
August 9, 2007
Source:
Florida State University
Summary:
A key challenge facing doctors as they treat patients suffering from cancer or other diseases resulting from genetic mutations is that the drugs at their disposal often don't discriminate between healthy cells and dangerous ones -- think of the brute-force approach of chemotherapy, for instance. To address this challenge, researchers are investigating techniques for using certain molecules that, when exposed to light, will kill only the harmful cells.

A key challenge facing doctors as they treat patients suffering from cancer or other diseases resulting from genetic mutations is that the drugs at their disposal often don't discriminate between healthy cells and dangerous ones -- think of the brute-force approach of chemotherapy, for instance. To address this challenge, Florida State University researchers are investigating techniques for using certain molecules that, when exposed to light, will kill only the harmful cells.

Igor V. Alabugin is an associate professor of chemistry and biochemistry at FSU. He specializes in a branch of chemistry known as photochemistry, in which the interactions between atoms, small molecules and light are analyzed.

"When one of the two strands of our cellular DNA is broken, intricate cell machinery is mobilized to repair the damage," he said. "Only because this process is efficient can humans function in an environment full of ultraviolet irradiation, heavy metals and other factors that constantly damage our cells."

However, a cell that sustains so much damage that both DNA strands are broken at the same time eventually will commit suicide -- a process known as apoptosis.

"In our research, we're working on ways to induce apoptosis in cancer cells -- or any cells that have harmful genetic mutations -- by damaging both of their DNA strands," Alabugin said. "We have found that a group of cancer-killing molecules known as lysine conjugates can identify a damaged spot, or 'cleavage,' in a single strand of DNA and then induce cleavage on the DNA strand opposite the damage site. This 'double cleavage' of the DNA is very difficult for the cell to repair and typically leads to apoptosis."

What's more, the lysine conjugates' cancer-killing properties are manifested only when they are exposed to certain types of light, thus allowing researchers to activate them at exactly the right place and time, when their concentration is high inside of the cancer cells, Alabugin said.

"So, for example, doctors treating a patient with an esophageal tumor might first inject the tumor with a drug containing lysine conjugates," he said. "Then they would insert a fiber-optic scope down the patient's throat to shine light on the affected area." The light exposure would activate the drug, leading to double-strand DNA damage in the cancerous cells -- and cell death -- for as much as 25 percent to 30 percent of the cells in the tumor,at a rate that rivals in efficiency any of the highly complex and rare DNA-cleaving molecules produced by nature, Alabugin said -- and, perhaps just as importantly, avoids damage to healthy cells.

For tumors located deeper within the body, he pointed to other studies showing that a pulsed laser device can be used to penetrate muscle and other tissues, thereby activating the drugs using near-infrared beams of light.

As proof of principle to the idea that lysine conjugates possess anti-cancer activity, Alabugin collaborated with cancer biologist Dr. John A. Copland of the Mayo Clinic College of Medicine in Jacksonville, Fla. In their tests, several of the molecules demonstrated little effect upon cultured cancer cells -- in this case, metastatic human kidney cancer cells -- without light, but upon phototherapy activation killed more than 90 percent of the cancer cells with a single treatment. Future work will include demonstrating anti-cancer activity in an animal model. Successful completion of the preclinical studies then could lead to clinical trials with human patients.

Alabugin recently collaborated with four other FSU researchers -- Associate Professor of Chemistry and Biochemistry Nancy L. Greenbaum and her postdoctoral fellow, Jörg C. Schlatterer, as well as Alabugin's postdoctoral fellow, Serguei V. Kovalenko, and doctoral student Boris Breiner -- on a paper describing the results of their research. That paper, "DNA Damage-Site Recognition by Lysine Conjugates," was published in the July 23 issue of the Proceedings of the National Academy of Sciences.

Alabugin and his FSU colleagues also have applied for a patent on their work.


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Cite This Page:

Florida State University. "Chemists Kill Cancer Cells With Light-activated Molecules." ScienceDaily. ScienceDaily, 9 August 2007. <www.sciencedaily.com/releases/2007/08/070808132019.htm>.
Florida State University. (2007, August 9). Chemists Kill Cancer Cells With Light-activated Molecules. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2007/08/070808132019.htm
Florida State University. "Chemists Kill Cancer Cells With Light-activated Molecules." ScienceDaily. www.sciencedaily.com/releases/2007/08/070808132019.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) — The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) — Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins