Featured Research

from universities, journals, and other organizations

Full-time Sensors Can Detect Bridge Defects

Date:
August 14, 2007
Source:
Sandia National Laboratories
Summary:
Networks of small, permanently mounted sensors could soon check continuously for the formation of structural defects in I-beams and other critical structural supports of bridges and highway overpasses, giving structural engineers a better chance of heading off catastrophic failures.

Dennis Roach with a Comparative Vacuum Monitoring (CVM) device showing galleries etched into the sensor's underside.
Credit: Photo by Randy Montoya

Networks of small, permanently mounted sensors could soon check continuously for the formation of structural defects in I-beams and other critical structural supports of bridges and highway overpasses, giving structural engineers a better chance of heading off catastrophic failures.

A Sandia National Laboratories team is developing and evaluating a family of such sensors for use on a variety of safety-critical structures. Full-time monitoring sensors already have been tested and proven by Sandia for use on aircraft structures.

Over time, the stresses on a bridge caused by traffic, weather, and construction can result in the formation of tiny cracks in the steel and concrete structures of bridges. Exposure to wind, rain, and other elements can cause corrosion that can become a structural concern as well.

Like nerve endings in a human body, permanently mounted, or in-situ sensors offer levels of vigilance and sensitivity to problems that periodic checkups cannot, says Dennis Roach, who leads the Sandia team.

Structural health monitoring (SHM) techniques, as they are called, are gaining acceptance in the commercial aviation sector as a reliable and inexpensive way to alert safety engineers to the first stages of defect formation and give them the earliest possible warning that maintenance is needed.

With sensors continually checking for the first signs of wear and tear, engineers can detect cracks sooner, do the right maintenance at the right time, and possibly prevent massive failures, he says.

Where flaws form

Sandia’s SHM work is an extension of its decades of research in non-destructive inspection (NDI) technologies currently used in manual inspections of commercial aircraft — to scan for small cracks in the airframe, for example.

The SHM sensors being developed or evaluated at Sandia can find fatigue damage, hidden cracks, erosion, impact damage, and corrosion, among other defects commonly encountered in bridges.

The Sandia team already has developed or evaluated several types of inexpensive, reliable sensors that could potentially be mounted on important infrastructure, typically where flaws are expected to form.

“If I usually get fatigue damage in a particular area, that’s where I am going to install a sensor,” Roach says.

One promising SHM sensor, a Comparative Vacuum Monitoring (CVM) sensor, is a thin, self-adhesive rubber patch, ranging from dime- to credit-card-sized, that detects cracks in the underlying material. The rubber is laser-etched with rows of tiny, interconnected channels or galleries, to which an air pressure is applied. Any propagating crack under the sensor breaches the galleries and the resulting change in pressure is monitored.

The CVM sensors — manufactured by Structural Monitoring Systems, Inc. (SMS) — are inexpensive, reliable, durable, and easy to apply, says Roach. More important, they provide equal or better sensitivity than is achievable with conventional inspection methods and can be placed in difficult to access locations, he says.

Some other sensors being considered include flexible eddy current arrays, piezoelectric transducers that can interrogate materials over long distances, embedded fiber optics, and conducting paint whose resistance changes when cracks form underneath.

Smart structures possible

“When we set out to do NDI, in the back of our minds we knew that eventually we wanted to create smart structures that ‘phone home’ when repairs are needed or when the remaining fatigue life drops below acceptable levels,” Roach says. “This is a huge step in the evolution of NDI.”

“These sensors have been tested and shown to detect defects and fatigue in metal structures where safety is of utmost concern,” says Roger Hartman, manager of Sandia’s Infrastructure Assurance and NDI Department.

By combining networks of sensors of various types with other advanced materials work Sandia has done, such as using composite materials to repair damage to a highway bridge or watching for the first signs of fatigue using computerized prognostics and health management algorithms, “you begin to evolve a system approach to making important infrastructure elements safer and more reliable,” Hartman says.

Ultimately, a structural engineer might plug a laptop or diagnostic station into a central port on a bridge to download structural health data. Eventually “smart structures” fitted with many sensors and augmented with PHM algorithms could self-diagnose and signal engineers that repairs are needed or that they will be needed in a defined time downstream.

Sandia already is investigating applying SHM to a variety of structures. In addition to bridges and aircraft, SHM techniques could be used to monitor the structural well-being of spacecraft, weapons, rail cars, oil recovery equipment, pipelines, buildings, armored vehicles, ships, wind turbines, nuclear power plants, and fuel tanks in hydrogen vehicles, Roach says.

“There is widespread recognition that SHM’s time has come, an opinion you would not have heard from many people a few years ago,” he says.

Sandia is a National Nuclear Security Administration laboratory.


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Full-time Sensors Can Detect Bridge Defects." ScienceDaily. ScienceDaily, 14 August 2007. <www.sciencedaily.com/releases/2007/08/070811213550.htm>.
Sandia National Laboratories. (2007, August 14). Full-time Sensors Can Detect Bridge Defects. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2007/08/070811213550.htm
Sandia National Laboratories. "Full-time Sensors Can Detect Bridge Defects." ScienceDaily. www.sciencedaily.com/releases/2007/08/070811213550.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins