Featured Research

from universities, journals, and other organizations

New Clues To Mechanism For 'Colossal Resistance' Effects

Date:
August 20, 2007
Source:
DOE/Brookhaven National Laboratory
Summary:
Experiments shed new light on some materials' ability to dramatically change their electrical resistance in the presence of an external magnetic or electric field. Small changes in resistance underlie many electronic devices, including some computer data storage systems. Understanding and applying dramatic resistance changes, known as colossal magnetoresistance, offers tremendous opportunities for the development of new technologies, including data-storage devices with increased data density and reduced power requirements.

The crystal lattice: A structural model showing disordered (A) and polaron ordered (B) states during application of electric stimulus. The models reveal details of the experimental results including atomic position, lattice displacement, electron polarization (p), and magnetic spin direction (m).
Credit: Image courtesy of DOE/Brookhaven National Laboratory

Experiments at the U.S. Department of Energy's Brookhaven National Laboratory shed new light on some materials' ability to dramatically change their electrical resistance in the presence of an external magnetic or electric field. Small changes in resistance underlie many electronic devices, including some computer data storage systems.

Related Articles


Understanding and applying dramatic resistance changes, known as colossal magnetoresistance, offers tremendous opportunities for the development of new technologies, including data-storage devices with increased data density and reduced power requirements.

"This is an extremely important piece of work with broad potential application in developing the next generation of electronic and data-storage devices," said Brookhaven physicist Yimei Zhu, one of the lead authors on a paper appearing in the August 21, 2007 Proceedings of the National Academy of Sciences.

The Brookhaven scientists were studying crystalline perovskite manganites that had been doped with extra charge carriers - electrons or "holes" (the absence of electrons) - using various state-of-the-art electron microscopy techniques. In an unprecedented experiment, the scientists used a scanning-tunneling microscope that was built inside an electron microscope to apply an electric stimulus to the sample while observing its response at the atomic scale.

Using this technique, the scientists obtained, for the first time, direct evidence that a small electric stimulus can distort the shape of the crystal lattice, and also cause changes in the way charges travel through the lattice. The lattice distortions accompanied the charge carrier as it moved through the lattice, producing a particle-like excitation called a polaron. "Polarons can be pictured as a charge carrier surrounded by a 'cloth' of the accompanying lattice vibrations," Zhu said.

Zhu's group observed polarons melting and reordering - that is, undergoing a transition from solid to liquid to solid again - in response to the applied current, which the scientists have identified as the key mechanism for colossal mangetoresistance. The technique also allowed the scientists to study polaron behavior, i.e., how variations in electric field, current, and temperature affected this transition.

"We show that static long-range ordering of polarons forms a polaron solid, which represents a new type of charge and orbital ordered state," said Zhu. "The related lattice distortions connect this phenomenon to colossal resistance effects, and suggest ways of modifying charge density and electronic interactions at the vicinity of electric interfaces and electrodes."

Colossal resistance effects could result in miniaturization of electric circuits that operate at lower power. This work therefore has direct impact on the application of these materials in the development of new electronic and spintronic devices (devices that use 'a combination of electron spin and charge). Such devices include new forms of "nonvolatile" computer memory (memory that can retain stored information even when not powered) such as resistive random access memory (RRAM).

This work was done in collaboration with Christian Jooss, a Brookhaven visiting scientist, and colleagues from the University of Goettingen, Germany. The work was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science and by the German Research Foundation.


Story Source:

The above story is based on materials provided by DOE/Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Brookhaven National Laboratory. "New Clues To Mechanism For 'Colossal Resistance' Effects." ScienceDaily. ScienceDaily, 20 August 2007. <www.sciencedaily.com/releases/2007/08/070817145222.htm>.
DOE/Brookhaven National Laboratory. (2007, August 20). New Clues To Mechanism For 'Colossal Resistance' Effects. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2007/08/070817145222.htm
DOE/Brookhaven National Laboratory. "New Clues To Mechanism For 'Colossal Resistance' Effects." ScienceDaily. www.sciencedaily.com/releases/2007/08/070817145222.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins