Featured Research

from universities, journals, and other organizations

Progress Understanding Vision Loss Due To Abnormal Network Of Blood Vessels In The Eye

Date:
August 22, 2007
Source:
Journal of Clinical Investigation
Summary:
Many millions of individuals worldwide suffer from vision loss as a result of the formation of an abnormal network of blood vessels in the eye. This abnormal blood vessel network forms in response to damage to the retina and often occurs in individuals who are diabetic. Understanding the molecular mechanisms controlling the development of the network of blood vessels in the retina under normal and pathological conditions is therefore an area of intensive research.

Many millions of individuals worldwide suffer from vision loss as a result of the formation of an abnormal network of blood vessels in the eye. This abnormal blood vessel network forms in response to damage to the retina and often occurs in individuals who are diabetic. Understanding the molecular mechanisms controlling the development of the network of blood vessels in the retina under normal and pathological conditions is therefore an area of intensive research.

In a study appearing online on August 16, in advance of publication in the September print issue of the Journal of Clinical Investigation, Timothy Hla and colleagues from the University of Connecticut School of Medicine, Farmington, show that under normal conditions, blood vessel development is indistinguishable in wild-type mice and in mice lacking a protein known as sphingosine -1-phosphate receptor 2 (S1P2R). By contrast, damage to the retina, in the form of low levels of oxygen, induces the formation of an abnormal network of blood vessels in the eyes of wild-type mice, but not in the eyes of S1P2R-deficient mice.

The absence of pathological blood vessel formation in S1P2R-deficient mice was associated with decreased inflammatory cell infiltration of the retina and decreased expression of the proinflammatory enzyme cyclooxygenase-2. This demonstration that S1P2R-driven inflammation is an important event in pathological blood vessel formation in the eye led the authors to suggest that inhibiting S1P2R activation in the retina might provide a new therapeutic approach to treating diseases of the eye caused by the presence of an abnormal blood vessel network.

Article: Essential role of sphingosine -1- phosphate receptor 2 in pathological angiogenesis of the mouse retina


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Cite This Page:

Journal of Clinical Investigation. "Progress Understanding Vision Loss Due To Abnormal Network Of Blood Vessels In The Eye." ScienceDaily. ScienceDaily, 22 August 2007. <www.sciencedaily.com/releases/2007/08/070818084751.htm>.
Journal of Clinical Investigation. (2007, August 22). Progress Understanding Vision Loss Due To Abnormal Network Of Blood Vessels In The Eye. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2007/08/070818084751.htm
Journal of Clinical Investigation. "Progress Understanding Vision Loss Due To Abnormal Network Of Blood Vessels In The Eye." ScienceDaily. www.sciencedaily.com/releases/2007/08/070818084751.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins