Featured Research

from universities, journals, and other organizations

Handling Turbulence On Titan And Earth

Date:
August 29, 2007
Source:
European Space Agency
Summary:
Ever spilled your drink on an airline due to turbulence? Researchers on both sides of the Atlantic are finding new ways to understand the phenomenon -- both on Earth and on Titan. Turbulence plays an important role in Earth’s weather system, and can be more than an inconvenience - hundreds of injuries have occurred on commercial flights due to turbulence. It is studied both in Earth's atmosphere and in that of Saturn's moon, Titan, aided by data from ESA’s Huygens probe. The study of one is helping the other.

This image is an artist's impression of the descent and landing sequence followed by ESA's Huygens probe that landed on Titan.
Credit: NASA

Ever spilled your drink on an airline due to turbulence? Researchers on both sides of the Atlantic are finding new ways to understand the phenomenon - both on Earth and on Titan.

Turbulence plays an important role in Earth’s weather system, and can be more than an inconvenience - hundreds of injuries have occurred on commercial flights due to turbulence. It is studied both in Earth's atmosphere and in that of Saturn's moon, Titan, aided by data from ESA’s Huygens probe. The study of one is helping the other.

Giles Harrison, atmospheric physicist at the University of Reading in the UK, devised an inexpensive way to measure the effects of turbulence using weather balloons. The instrument package contains a magnetic field sensor which measures fluctuations in Earth’s magnetic field due to turbulence. As Earth's magnetic field is very stable, the measurements of magnetic changes taken with the weather balloon showed the effects of turbulence on the sensor, since the balloon itself was moving very violently.

All bodies, planets and moons, are subject to the same principles of physics. So by working together, researchers looking at Earth and those looking at our planetary neighbours can really test their models of the processes taking place and gain new insights into both.

Planetary scientist Ralph Lorenz, at the Johns Hopkins University Applied Physics Laboratory in the USA, found Harrison's results key to making sense of data from Huygens, which descended by parachute through Titan's atmosphere in January 2005.

The Surface Science Package (SSP) on board Huygens included a set of tilt sensors which measured motions of the probe during its descent. These tilt sensors act much like a drink in a glass, using a small slug of liquid to measure the tilt angle.

As the probe plummeted under the parachute through Titan’s atmosphere, there was a lot of buffeting, even though the air itself was fairly still. Knowing the signature of cloud-induced turbulence in Harrison's balloon data from Earth inspired Lorenz to look for a similar effect in the Huygens data using the tilt sensor.

“Huygens’ tilt history was just this long, squiggly, complex mess, but seeing the fingerprint of cloud turbulence in Harrison's work showed me what to look for,” said Lorenz.

Armed with that information, Lorenz found that a 20-minute period of Huygens' 2.5-hour descent, around an altitude of 20 km, was affected by this kind of in-cloud turbulence. Having experimented with instrumentation on small models, even frisbees, to understand the dynamics of aerospace vehicles like the probe, Lorenz was familiar with the sensors used by Harrison.

Lorenz’s analysis helped identify a turbulent cloud layer in Titan’s atmosphere - a significant result for the investigation of Titan’s meteorology. In the process, he also found a way to improve Harrison's magnetic sensor arrangement on the weather balloon, simply by changing its orientation.

Mark Leese, Project Manager for the SSP on Huygens at The Open University said “We knew Huygens had a bumpy ride down to Titan’s surface. Now we can separate out twenty minutes of air turbulence – probably due to a cloud layer - from other effects such as cross winds or air buffeting due to the irregular shape of the probe.”

Reference: Lorenz's analysis ‘Descent motions of the Huygens probe as measured by the Surface Science Package (SSP): turbulent evidence for a cloud layer’, by R. Lorenz, J. Zarnecki, M. Towner, M. Leese, A. Ball, B. Hathi, A. Hagermann and N. Ghafoor, in the online version of the Planetary and Space Science journal. It is expected to appear in print in November this year.

The original work by Harrison and Hogan was published last year in the Journal of Atmospheric and Oceanic Technology, in a paper titled ‘In Situ Atmospheric Turbulence Measurement Using the Terrestrial Magnetic Field— A Compass for a Radiosonde’ by R. Harrison and R. Hogan.

An exchange of ideas between Lorenz and Harrison appears in the August 2007 issue of the Journal of Oceanic and Atmospheric Technology.

Harrison's work is supported by the Paul Instrument Fund of the Royal Society, Lorenz is supported by NASA's Cassini Project. The Science and Technology Facilities Council funds UK participation in the Cassini Huygens mission, in particular, the research at The Open University.

Weather balloons carry packages known as radiosondes, which take (sounding) measurements of air temperature, moisture and wind direction used for weather forecasting. The balloons are filled with helium or hydrogen gas and the measurements are sent back to the surface by radio. When the balloon bursts, usually at 15 to 20 km altitude, the instruments fall to earth by parachute.


Story Source:

The above story is based on materials provided by European Space Agency. Note: Materials may be edited for content and length.


Cite This Page:

European Space Agency. "Handling Turbulence On Titan And Earth." ScienceDaily. ScienceDaily, 29 August 2007. <www.sciencedaily.com/releases/2007/08/070828115959.htm>.
European Space Agency. (2007, August 29). Handling Turbulence On Titan And Earth. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2007/08/070828115959.htm
European Space Agency. "Handling Turbulence On Titan And Earth." ScienceDaily. www.sciencedaily.com/releases/2007/08/070828115959.htm (accessed October 1, 2014).

Share This



More Space & Time News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Astronomers Spot Largest, Brightest Solar Flare Ever

Astronomers Spot Largest, Brightest Solar Flare Ever

Newsy (Oct. 1, 2014) — The initial blast from the record-setting explosion would have appeared more than 10,000 times more powerful than any flare ever recorded. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins