Featured Research

from universities, journals, and other organizations

NASA Satellites Eye Coastal Water Quality

Date:
September 4, 2007
Source:
NASA/Goddard Space Flight Center
Summary:
Researchers armed with data from two NASA satellites have invented a way to map the fleeting changes in coastal water quality from space. Sediments entering the water as a result of coastal development or pollution can cause changes in water turbidity – a measure of the amount of particles suspended in the water. Sediments suspended from the bottom by strong winds or tides may also cause such changes. Knowing where the sediments come from is critical to managers because turbidity cuts off light to the bottom, thwarting the natural growth of plants.

High concentrations of microscopic plants called phytoplankton (red regions) along the Florida coast and in Tampa Bay are an indicator of ocean health and change as seen in this SeaWiFS image from October 2004. Researchers have successfully used data from similar images to monitor almost daily changes in coastal water quality.
Credit: SeaWiFS Project

Using data from instruments aboard NASA satellites, Zhiqiang Chen and colleagues at the University of South Florida in St. Petersburg, found that they can monitor water quality almost daily, rather than monthly.

Related Articles


Such information has direct application for resource managers devising restoration plans for coastal water ecosystems and federal and state regulators in charge of defining water quality standards.

The team's findings, published July 30 in two papers in Remote Sensing of Environment, will help tease out factors that drive changes in coastal water quality. For example, sediments entering the water as a result of coastal development or pollution can cause changes in water turbidity -- a measure of the amount of particles suspended in the water. Sediments suspended from the bottom by strong winds or tides may also cause such changes. Knowing where the sediments come from is critical to managers because turbidity cuts off light to the bottom, thwarting the natural growth of plants.

"If we can track the source of turbidity, we can better understand why turbidity is changing. And if the source is human-related, we can try to manage that human activity," says Frank Muller-Karger, a study co-author from the University of South Florida.

Satellites previously have observed turbidity in the open ocean by monitoring how much light is reflected and absorbed by the water. The technique has not had much success in observing turbidity along the coast, however. That's because shallow coastal waters and Earth's atmosphere serve up complicated optical properties that make it difficult for researchers to determine which colors in a satellite image are related to turbidity, which to shallow bottom waters, and which to the atmosphere. Now with advances in satellite sensors combined with developments in how the data are analyzed, Chen and colleagues show it is possible to monitor turbidity of coastal waters via satellite.

The traditional methods of monitoring coastal water quality require scientists to use boats to gather water samples, typically on a monthly basis because of the high costs of these surveys. The method is sufficient to capture episodic events affecting water quality, such as seasonal freshwater runoff. Chen and colleagues suspected, however, that the monthly measurements were not capturing fast changes in factors that affect water quality, such as winds, tides and human influences including pollution and runoff.

The team set out to see if satellites could accurately measure two key indicators of water quality - turbidity and water clarity -- in Tampa Bay, Fla. An analysis of turbidity takes into account water clarity, a measure of how much light can penetrate into deep water. Satellites, with their wide coverage and multiple passes per week, provided a solution to frequent looks and measuring an entire estuary within seconds.

To determine water clarity in Tampa Bay, the team looked at more than eight years of imagery from GeoEYE's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) instrument, whose data is analyzed, processed and distributed by NASA for research. The images give a measure of how much light is reflected by the water. The data were put through a two-step calculation to arrive at a measure of clarity. Similarly, data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) instrument onboard the Aqua satellite was compared with measurements of turbidity gathered on the ground and then applied to each whole image to make the maps.

When compared with results from independent field measurements, collected with the help from the U.S. Geological Survey, the researchers found that the satellites offered an accurate measure of water quality in the bay. The method can be applied to coastal waters worldwide with little change in methods, according to Muller-Karger.

Frequent measurements from space could resolve questions about the specific timing and nature of events that led to decreases in water quality. Seasonal freshwater discharge from nearby rivers and runoff into the bay can carry nutrients. If these nutrients are not controlled, they can give rise to large and harmful phytoplankton blooms, which can kill sea grass. Wind conditions, however, are the driving force for a decline in water quality in the dry season between October and June, when bottom sediments are disturbed.

"It's important to look at baseline conditions and see how they change with the seasons and over the years, and whether that change is due to development, coastal erosion, the extraction and dumping of sediments, or digging a channel," Muller-Karger says.

The SeaWiFS sensor was launched aboard the OrbView-2 satellite in 1997 to collect ocean color data. MODIS was launched aboard the Aqua satellite in 2002. The instrument collects measurements from the entire Earth surface every one to two days.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA Satellites Eye Coastal Water Quality." ScienceDaily. ScienceDaily, 4 September 2007. <www.sciencedaily.com/releases/2007/08/070829162748.htm>.
NASA/Goddard Space Flight Center. (2007, September 4). NASA Satellites Eye Coastal Water Quality. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/08/070829162748.htm
NASA/Goddard Space Flight Center. "NASA Satellites Eye Coastal Water Quality." ScienceDaily. www.sciencedaily.com/releases/2007/08/070829162748.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Fish Species Discovered, Setting Record for World's Deepest

New Fish Species Discovered, Setting Record for World's Deepest

Buzz60 (Dec. 22, 2014) A new species of fish is discovered living five miles beneath the ocean surface, making it the deepest living fish on earth. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Raw: Lava Inches Closer to Highway

Raw: Lava Inches Closer to Highway

AP (Dec. 21, 2014) Officials have opened a new road on Hawaii's Big Island for drivers to take care of their daily needs if encroaching lava from Kilauea Volcano crosses a highway and cuts them off from the rest of the island. (Dec. 20) Video provided by AP
Powered by NewsLook.com
Could Cheap Oil Help Fix U.S. Roads?

Could Cheap Oil Help Fix U.S. Roads?

Newsy (Dec. 21, 2014) As falling oil prices boost Americans' spending power, the U.S. government is also gaining flexibility from savings on oil. Video provided by Newsy
Powered by NewsLook.com
Raw: Russian Surfers Brave Icy Cold Waters

Raw: Russian Surfers Brave Icy Cold Waters

AP (Dec. 20, 2014) Surfers in Russia's biggest port city on the Pacific Ocean, Vladivostok, were enjoying the sport on Saturday despite below freezing temperatures and icy cold waters. (Dec. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins