Featured Research

from universities, journals, and other organizations

System To Build Transplant Tissue Created

Date:
October 9, 2007
Source:
Cornell University
Summary:
Engineers say they have developed a microvascular system that can nourish growing tissues, a step that may one day allow laboratories to grow synthetically engineered tissues for transplants. The researchers have engineered tiny channels within a water-based gel that mimic a vascular system at the cellular scale and can supply oxygen, essential nutrients and growth factors to feed individual cells. The so-called gel scaffold can hold tens of millions of living cells per milliliter in a 3-D arrangement, such as in the shape of a knee meniscus, to create a template for tissue to form.

Images of channels in gel for growing tissues were captured on a fluorescence microscope. The upper image is a top view; the lower images is a cross-sectional view. The hydrogel fitted with microchannels contained 25 million living cartilage cells per milliliter. The green zones indicate regions where micro-channels are feeding nutrients to healthy cells.
Credit: Nak Won Cho/Cornell

One day soon, laboratories may grow synthetically engineered tissues such as muscle or cartilage needed for transplants. In a major step forward, Cornell engineers describe in the journal Nature Materials a microvascular system they have developed that can nourish growing tissues.

The researchers have engineered tiny channels within a water-based gel that mimic a vascular system at the cellular scale and can supply oxygen, essential nutrients and growth factors to feed individual cells. The so-called gel scaffold can hold tens of millions of living cells per milliliter in a 3-D arrangement, such as in the shape of a knee meniscus, to create a template for tissue to form.

In theory, the system could accommodate many kinds of tissue.

"A significant impediment to building engineered tissues is that you can't feed the core," said Abraham Stroock, Cornell assistant professor of chemical and biomolecular engineering and one of the paper's senior authors. "Simply embedding this mimic of a microvascular system allows you to maintain the core of the tissue during culture." Gel scaffolds, he said, "are the culture flasks of the future."

The embedded microchannels allow fluid with oxygen, sugar and proteins to travel through the system. The researchers can control the distributions of these solutes over both time and space within the developing tissue, allowing the fine-tuning of the biochemical environment of the cells while the tissue develops. For example, the tissue may need to develop into bone on one side and cartilage on the other. Now the researchers can supply the right nutrients and proteins to certain parts of the growing tissue to ensure an intended outcome.

The research provides solutions to the physical engineering aspects of growing tissues synthetically. Still, many biological challenges remain, such as finding a source of cells that can be harvested from a patient and grown without changing the cell's characteristics. Co-author Lawrence Bonassar, a Cornell associate professor of biomedical engineering who was instrumental in developing the gel for tissue growth and in determining the proper biological requirements for cell growth, is also among those trying to direct stem cells to produce desired tissue types. Currently, stem cell-derived cartilage has been made but is not functional.

As new tools develop, researchers hope to use these engineered tissues in non-clinical applications, such as replacements for animals in the testing of pharmaceuticals and chemicals. The technology, researchers believe, also offers the hope of growing implants from the patient's own cells to replace damaged or diseased tissue.

The research was funded by the Office of Naval Research, Cornell's Nanobiotechnology Center, Beckman Foundation, the Center for Life Science Enterprise at Cornell and the Cornell Center for Materials Research.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "System To Build Transplant Tissue Created." ScienceDaily. ScienceDaily, 9 October 2007. <www.sciencedaily.com/releases/2007/10/071008161609.htm>.
Cornell University. (2007, October 9). System To Build Transplant Tissue Created. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2007/10/071008161609.htm
Cornell University. "System To Build Transplant Tissue Created." ScienceDaily. www.sciencedaily.com/releases/2007/10/071008161609.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com
How The 'Angelina Jolie Effect' Increased Cancer Screenings

How The 'Angelina Jolie Effect' Increased Cancer Screenings

Newsy (Sep. 19, 2014) Angelina's Jolie's decision to undergo a preventative mastectomy in 2013 inspired many women to seek early screenings for the disease. Video provided by Newsy
Powered by NewsLook.com
The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins