Featured Research

from universities, journals, and other organizations

'Bionic' Nerve To Bring Damaged Limbs And Organs Back To Life

Date:
October 18, 2007
Source:
University of Manchester
Summary:
University of Manchester researchers have transformed fat tissue stem cells into nerve cells -- and now plan to develop an artificial nerve that will bring damaged limbs and organs back to life. In a study published in October's Experimental Neurology, Dr Paul Kingham and his team at the UK Centre for Tissue Regeneration isolated the stem cells from the fat tissue of adult animals and differentiated them into nerve cells to be used for repair and regeneration of injured nerves. They are now about to start a trial extracting stem cells from fat tissue of volunteer adult patients, in order to compare in the laboratory human and animal stem cells.

Giorgio Terenghi is director of the UK Centre for Tissue Regeneration. The team of scientists have transformed fat tissue stem cells into nerve cells - and now plan to develop an artificial nerve that will bring damaged limbs and organs back to life.
Credit: Image courtesy of University of Manchester

University of Manchester researchers have transformed fat tissue stem cells into nerve cells - and now plan to develop an artificial nerve that will bring damaged limbs and organs back to life.

In a study published in October's Experimental Neurology, Dr Paul Kingham and his team at the UK Centre for Tissue Regeneration (UKCTR) isolated the stem cells from the fat tissue of adult animals and differentiated them into nerve cells to be used for repair and regeneration of injured nerves. They are now about to start a trial extracting stem cells from fat tissue of volunteer adult patients, in order to compare in the laboratory human and animal stem cells.

Following that, they will develop an artificial nerve constructed from a biodegradable polymer to transplant the differentiated stem cells. The biomaterial will be rolled up into a tube-like structure and inserted between the two ends of the cut nerve so that the regrowing nerve fibre can go through it from one end to the other.

This 'bionic' nerve could also be used in people who have suffered trauma injuries to their limbs or organs, cancer patients whose tumour surgery has affected a nearby nerve trunk and people who have had organ transplants.

With a clinical trial on the biomaterial about to be completed, the researchers hope the treatment could be ready for use in four or five years.

Dr Kingham said: "The differentiated stem cells have great potential for future clinical use, initially for treatment of patients with traumatic injuries of nerves in the arms and legs.

"This work will also help to develop a similar surgical approach for organ transplant, to give full functional recuperation to the transplanted tissue.

"Furthermore, the technique of artificial nerve grafting could also be applicable when tumour mass has involved a nearby nerve trunk, which consequently has to be excised together with the tumour, such as the removal of a prostate tumour where damage to the nerve leads to male impotence."

Director of the UKCTR, Professor Giorgio Terenghi said: "This new research is a very exciting development with many future clinical applications that will improve the lives of many different types of patients and therefore many, many people.

"The frequency of nerve injury is one in every 1,000 of the population - or 50,000 cases in the UK - every year.

"The current repair method - a patient donating their own nerve graft to span the gap at the injury site - is far from optimal because of the poor functional outcome, the extra damage and the possibility of forming scars and tumours at the donor site. Tissue engineering using a combination of biomaterials and cell-based therapies, while at an early stage, promises a great improvement on that. Artificial nerve guides provide mechanical support, protect the re-growing nerve and contain growth factor and molecules favourable to regeneration. The patient will not be able to tell that they had ever 'lost' their limb and will be able carry on exactly as they did before."

He added: "The facilities available at the UKCTR have been developed jointly by the University of Manchester and the North West Development Agency, with exactly this aim - to provide the transition from experimental research to new clinical treatment."


Story Source:

The above story is based on materials provided by University of Manchester. Note: Materials may be edited for content and length.


Cite This Page:

University of Manchester. "'Bionic' Nerve To Bring Damaged Limbs And Organs Back To Life." ScienceDaily. ScienceDaily, 18 October 2007. <www.sciencedaily.com/releases/2007/10/071017094047.htm>.
University of Manchester. (2007, October 18). 'Bionic' Nerve To Bring Damaged Limbs And Organs Back To Life. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2007/10/071017094047.htm
University of Manchester. "'Bionic' Nerve To Bring Damaged Limbs And Organs Back To Life." ScienceDaily. www.sciencedaily.com/releases/2007/10/071017094047.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Fauci: Ebola Protocols to Focus on Training

Fauci: Ebola Protocols to Focus on Training

AP (Oct. 20, 2014) Dr. Anthony Fauci, head of the National Institute of Allergy and Infectious Diseases, says he expects revised CDC protocols on Ebola to focus on training, observation and ensuring health care workers are more protected. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins