Featured Research

from universities, journals, and other organizations

Silicon Can Work For New-Age Spintronics Applications

Date:
October 31, 2007
Source:
University of Delaware
Summary:
In a rapid follow-up to their achievement as the first to demonstrate how an electron's spin can be electrically injected, controlled and detected in silicon, electrical engineers from the University of Delaware and Cambridge NanoTech now show that this quantum property can be transported a marathon distance in the world of microelectronics -- through an entire silicon wafer. The finding confirms that silicon -- the workhorse material of present-day electronics -- now can be harnessed up for new-age spintronics applications.

The miniscule silicon "spin chip" contains more than a dozen tiny spin-transport devices.

In a rapid follow-up to their achievement as the first to demonstrate how an electron's spin can be electrically injected, controlled and detected in silicon, electrical engineers from the University of Delaware and Cambridge NanoTech now show that this quantum property can be transported a marathon distance in the world of microelectronics-- through an entire silicon wafer.

Related Articles


The finding confirms that silicon--the workhorse material of present-day electronics--now can be harnessed up for new-age spintronics applications.

The results mark another major steppingstone in the pioneering field of spintronics, which aims to use the intrinsic “spin” property of electrons versus solely their electrical charge for the cheaper, faster, lower-power processing and storage of data than present-day electronics can offer.

The research team included Ian Appelbaum, UD assistant professor of electrical and computer engineering, and his doctoral student, Biqin Huang, and Douwe Monsma, of Cambridge NanoTech in Cambridge, Mass. Huang was the lead author of the article.*

“Our new result is significant because it means that silicon can now be used to perform many spin manipulations both within the space of thousands of devices and within the time of thousands of logic operations, paving the way for silicon-based spintronics circuits,” Appelbaum said.

In Appelbaum's lab at UD, the team fabricated a device that injected high-energy, “hot” electrons from a ferromagnet into the silicon wafer. Another hot-electron structure (made by bonding two silicon wafers together with a thin-film ferromagnet) detected the electrons on the other side.

“Electron spin has a direction, like 'up' or 'down,' ” Appelbaum said. “In silicon, there are normally equal numbers of spin-up and -down electrons. The goal of spintronics is to use currents with most of the electron spins oriented, or polarized, in the same direction.”

In another recent paper published in the Aug. 13 issue of Applied Physics Letters, the team showed how to attain very high spin polarization, achieving more than 37 percent, and then demonstrated operation as the first semiconductor spin field-effect transistor.

“One hundred percent polarization means that all injected electrons are either spin-up or spin-down,” Huang explained. “High polarization will be necessary for practical applications.”

“In the future, spintronics may bring a great change to daily life,” Huang added.

“We're taking the first steps at the beginning of a new road,” Appelbaum said. “Before our initial work on spin transport in silicon, we didn't even know where the road was,” he said with a smile. “There's a lot of fundamental work to be done, which we hope will bring us closer to a new age of electronics.”

*The article was published in the Oct. 26 issue of the American Physical Society's journal Physical Review Letters.


Story Source:

The above story is based on materials provided by University of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University of Delaware. "Silicon Can Work For New-Age Spintronics Applications." ScienceDaily. ScienceDaily, 31 October 2007. <www.sciencedaily.com/releases/2007/10/071026162320.htm>.
University of Delaware. (2007, October 31). Silicon Can Work For New-Age Spintronics Applications. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2007/10/071026162320.htm
University of Delaware. "Silicon Can Work For New-Age Spintronics Applications." ScienceDaily. www.sciencedaily.com/releases/2007/10/071026162320.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

European Parliament Might Call For Google's Break-Up

European Parliament Might Call For Google's Break-Up

Newsy (Nov. 22, 2014) This is the latest development in an antitrust investigation accusing Google of unfairly prioritizing own products and services in search results. Video provided by Newsy
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Is Nintendo Making A Comeback With 'Super Smash Bros.'?

Is Nintendo Making A Comeback With 'Super Smash Bros.'?

Newsy (Nov. 21, 2014) Nintendo released new "Super Smash Bros." Friday, and it's getting great reviews. Could this mean a comeback for the gaming company? Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins