Featured Research

from universities, journals, and other organizations

New Magnet Design Sheds Light On Nanotechnology And Semiconductor Research

Date:
November 5, 2007
Source:
Florida State University
Summary:
Engineers have successfully tested a groundbreaking new magnet design that could literally shed new light on nanoscience and semiconductor research. Magnet engineers worldwide have been trying to solve the problem of creating a magnet with side access at the midsection, but they have met with little success in higher fields.

Magnet coil.
Credit: Florida State University

Engineers at Florida State University's National High Magnetic Field Laboratory have successfully tested a groundbreaking new magnet design that could literally shed new light on nanoscience and semiconductor research.

Related Articles


When the magnet -- called the Split Florida Helix -- is operational in 2010, researchers will have the ability to direct and scatter laser light at a sample not only down the bore, or center, of the magnet, but also from four ports on the sides of the magnet, while still reaching fields above 25 tesla. By comparison, the highest-field split magnet in the world attains 18 tesla. "Tesla" is a measurement of the strength of a magnetic field; 1 tesla is equal to 20,000 times the Earth's magnetic field.

Magnetism is a critical component of a surprising number of modern technologies, including MRIs and disk drives, and high-field magnets stand beside lasers and microscopes as essential research tools for probing the mysteries of nature. With this new magnet, scientists will be able to expand the scope of their experimental approach, learning more about the intrinsic properties of materials by shining light on crystals from angles not previously available in such high magnetic fields. In materials research, scientists look at which kinds of light are absorbed or reflected at different crystal angles, giving them insight into the fundamental electronic structure of matter.

The Split Florida Helix design represents a significant accomplishment for the magnet lab's engineering staff. High magnetic fields exert tremendous forces inside the magnet, and those forces are directed at the small space in the middle . . . that's where Mag Lab engineers cut big holes in it.

"You have enough to worry about with traditional magnets, and then you try to cut huge holes from all four sides from which you can access the magnet," said lab engineer Jack Toth, who is spearheading the project. "Basically, near the midplane, more than half of the magnet structure is cut away for the access ports, and it's still supposed to work and make high magnetic fields."

Magnet engineers worldwide have been trying to solve the problem of creating a magnet with side access at the midsection, but they have met with little success in higher fields. Magnets are created by packing together dense, high-performance copper alloys and running a current through them, so carving out empty space at the heart of a magnet presents a huge engineering challenge.

Instead of fashioning a tiny pinhole to create as little disruption as possible, as other labs have tried, Toth and his team created a design with four big elliptical ports crossing right through the midsection of the magnet. The ports open 50 percent of the total space available for experiments, a capability the laboratory's visiting scientists have long desired.

"It's different from any traditional magnet that we've ever built before, and even the fabrication of our new parts was very challenging," Toth said. "In search of a vendor for manufacturing the prototypes, I had phone conversations where people would promise me, 'Jack, we looked at it from every possible angle and this part is impossible to machine.'"

Of course, that wasn't the case, and the model coil, crafted from a mix of copper-beryllium blocks and copper-silver plates, met expectations during its testing in a field higher than 32 tesla with no damage to its parts.

Though the National Science Foundation-funded model has reached an important milestone, years of work will go into the final product. The lab hopes to have a working magnet for its User Program by 2010, and other research facilities have expressed great interest in having split magnets that can generate high magnetic fields.


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Cite This Page:

Florida State University. "New Magnet Design Sheds Light On Nanotechnology And Semiconductor Research." ScienceDaily. ScienceDaily, 5 November 2007. <www.sciencedaily.com/releases/2007/10/071031152845.htm>.
Florida State University. (2007, November 5). New Magnet Design Sheds Light On Nanotechnology And Semiconductor Research. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2007/10/071031152845.htm
Florida State University. "New Magnet Design Sheds Light On Nanotechnology And Semiconductor Research." ScienceDaily. www.sciencedaily.com/releases/2007/10/071031152845.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MINI Shows Off Augmented Reality Glasses

MINI Shows Off Augmented Reality Glasses

AP (Apr. 24, 2015) — MINI showcased its new augmented reality glasses at the Shanghai Auto Show this week, which designers say will make roads safer and allow the driver to see through opaque parts of the car. (April 24) Video provided by AP
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
'Safest Bike Ever' Devised by British Entrepreneur

'Safest Bike Ever' Devised by British Entrepreneur

Reuters - Innovations Video Online (Apr. 23, 2015) — A British inventor says his Babel bike is the safest bicycle ever produced. Crispin Sinclair - son of famous British inventor Sir Clive Sinclair - hopes the bike&apos;s safety cage, double seatbelt, and host of other measures will inspire non-cyclists to get in the saddle. Jim Drury went to see it in action. Video provided by Reuters
Powered by NewsLook.com
First Successful Aerial Refueling of a Drone

First Successful Aerial Refueling of a Drone

Reuters - Innovations Video Online (Apr. 23, 2015) — The bat-wing U.S. Navy drone that became the first autonomous airplane to take off and land on an aircraft carrier accomplished yet another milestone on Wednesday, becoming the first unmanned aircraft to undergo aerial refueling. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins