Featured Research

from universities, journals, and other organizations

Evolutionary Comparison Finds New Human Genes

Date:
November 23, 2007
Source:
Cornell University
Summary:
Using supercomputers to compare the human genome with those of other mammals, researchers have discovered some 300 previously unidentified human genes. The discovery is based on the idea that as organisms evolve, sections of genetic code that do something useful for the organism change in different ways.

Using supercomputers to compare portions of the human genome with those of other mammals, researchers at Cornell have discovered some 300 previously unidentified human genes, and found extensions of several hundred genes already known.

Related Articles


The discovery is based on the idea that as organisms evolve, sections of genetic code that do something useful for the organism change in different ways.

The research is reported by Adam Siepel, Cornell assistant professor of biological statistics and computational biology, Cornell postdoctoral researcher Brona Brejova and colleagues at several other institutions in the online version of the journal Genome Research, and it will appear in the December print edition.

The complete human genome was sequenced several years ago, but that simply means that the order of the 3 billion or so chemical units, called bases, that make up the genetic code is known. What remains is the identification of the exact location of all the short sections that code for proteins or perform regulatory or other functions.

More than 20,000 protein-coding genes have been identified, so the Cornell contribution, while significant, doesn't dramatically change the number of known genes. What's important, the researchers say, is that their discovery shows there still could be many more genes that have been missed using current biological methods. These methods are very effective at finding genes that are widely expressed but may miss those that are expressed only in certain tissues or at early stages of embryonic development, Siepel said.

"What's exciting is using evolution to identify these genes," Siepel said. "Evolution has been doing this experiment for millions of years. The computer is our microscope to observe the results."

Four different bases -- commonly referred to by the letters G, C, A and T -- make up DNA. Three bases in a row can code for an amino acid (the building blocks of proteins), and a string of these three-letter codes can be a gene, coding for a string of amino acids that a cell can make into a protein.

Siepel and colleagues set out to find genes that have been "conserved" -- that are fundamental to all life and that have stayed the same, or nearly so, over millions of years of evolution.

The researchers started with "alignments" discovered by other workers -- stretches up to several thousand bases long that are mostly alike across two or more species. Using large-scale computer clusters, including an 850-node cluster at the Cornell Center for Advanced Computing, the researchers ran three different algorithms, or computing designs -- one of which Siepel created -- to compare these alignments between human, mouse, rat and chicken in various combinations.

Over millions of years, individual bases can be swapped -- C to G, T to A, for example -- by damage or miscopying. Changes that alter the structure of a protein can kill the organism or send it down a dead-end evolutionary path. But conserved genes contain only minor changes that leave the protein able to do its job. The computer looked for regions with those sorts of changes by creating a mathematical model of how the gene might have changed, then looking for matches to this model.

After eliminating predictions that matched already known genes, the researchers tested the remainder in the laboratory, proving that many of the genes could in fact be found in samples of human tissue and could code for proteins. The researchers were sometimes able to identify the proteins by comparison with databases of known proteins. The discovered genes mainly have to do with motor activity, cell adhesion, connective tissue and central nervous system development, functions that might be expected to be common to many different creatures.

The entire project, from building and testing the mathematical models to running final laboratory tests, took about three years, Siepel said. The work was supported by the National Cancer Institute, a National Science Foundation Early Career Development Grant and a University of California graduate research fellowship.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Evolutionary Comparison Finds New Human Genes." ScienceDaily. ScienceDaily, 23 November 2007. <www.sciencedaily.com/releases/2007/11/071120111538.htm>.
Cornell University. (2007, November 23). Evolutionary Comparison Finds New Human Genes. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2007/11/071120111538.htm
Cornell University. "Evolutionary Comparison Finds New Human Genes." ScienceDaily. www.sciencedaily.com/releases/2007/11/071120111538.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins