Featured Research

from universities, journals, and other organizations

Catalyst-free Chemistry Makes Self-healing Materials More Practical

Date:
December 3, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
A new catalyst-free, self-healing material system offers a far less expensive and far more practical way to repair composite materials used in structural applications ranging from airplane fuselages to wind-farm propeller blades.

A new catalyst-free, self-healing material system developed by Jeffrey Moore, the Murchison-Mallory Professor of Chemistry at Illinois, is flanked by Scott White, a professor of aerospace engineering, and Nancy Sottos, a professor of materials science and engineering, offers a far less expensive and far more practical way to repair composite materials used in structural applications ranging from airplane fuselages to wind-farm propeller blades.
Credit: L. Brian Stauffer

A new catalyst-free, self-healing material system developed by researchers at the University of Illinois offers a far less expensive and far more practical way to repair composite materials used in structural applications ranging from airplane fuselages to wind-farm propeller blades.

The new self-healing system incorporates chlorobenzene microcapsules, as small as 150 microns in diameter, as an active solvent. The expensive, ruthenium-based Grubbs' catalyst, which was required in the researchers' first approach, is no longer needed.

"By removing the catalyst from our material system, we now have a simpler and more economical alternative for strength recovery after crack damage has occurred," said Jeffrey Moore, the Murchison-Mallory Professor of Chemistry at Illinois. "Self-healing of epoxy materials with encapsulated solvents can prevent further crack propagation, while recovering most of the material's mechanical integrity."

During normal use, epoxy-based materials experience stresses that can cause cracking, which can lead to mechanical failure. Autonomous self-healing -- a process in which the damage itself triggers the repair mechanism -- can retain structural integrity and extend the lifetime of the material.

"Although we demonstrated the self-healing concept with a ruthenium-based catalyst, the cost of the catalyst made our original approach too expensive and impractical," said Moore, who also is affiliated with the university's Frederick Seitz Materials Research Laboratory and with the Beckman Institute. "Our new self-healing system is simple, very economical and potentially robust."

In the researchers' original approach, self-healing materials consisted of a microencapsulated healing agent (dicyclopentadiene) and Grubbs' catalyst embedded in an epoxy matrix. When the material cracked, microcapsules would rupture and release the healing agent, which then reacted with the catalyst to repair the damage.

In their new approach, when a crack forms in the epoxy material, microcapsules containing chlorobenzene break. The solvent disperses into the matrix, where it finds pockets of unreacted epoxy monomers. The solvent then carries the latent epoxy monomers into the crack, where polymerization takes place, restoring structural integrity.

In fracture tests, self-healing composites with catalyst-free chemistry recovered as much as 82 percent of their original fracture toughness.

The new catalyst-free chemistry has taken down the barriers to cost and level of difficulty, Moore said. "From an economics and simplicity standpoint, self-healing materials could become part of everyday life."

The new chemistry is described in a paper accepted for publication in Macromolecules, and posted on the journal's Web site.

With Moore, co-authors of the paper are graduate student and lead author Mary Caruso, former postdoctoral research associate David Delafuente (now a chemistry and physics professor at Augusta State University), visiting University of Texas at Austin undergraduate student Victor Ho, materials science and engineering professor Nancy Sottos, and aerospace engineering professor Scott White.

The work was funded by the Air Force Office of Scientific Research and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Catalyst-free Chemistry Makes Self-healing Materials More Practical." ScienceDaily. ScienceDaily, 3 December 2007. <www.sciencedaily.com/releases/2007/11/071127105523.htm>.
University of Illinois at Urbana-Champaign. (2007, December 3). Catalyst-free Chemistry Makes Self-healing Materials More Practical. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2007/11/071127105523.htm
University of Illinois at Urbana-Champaign. "Catalyst-free Chemistry Makes Self-healing Materials More Practical." ScienceDaily. www.sciencedaily.com/releases/2007/11/071127105523.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins