Featured Research

from universities, journals, and other organizations

First Findings On Key Astrophysics Problem

Date:
December 3, 2007
Source:
University of New Hampshire
Summary:
Experimental evidence points in a new direction toward the solution of a longstanding, central problem of plasma astrophysics and space physics. The mystery involves electron acceleration during magnetic explosions that occur, for example, in solar flares and "substorms" in the Earth's magnetosphere - the comet-shaped protective sheath that surrounds the planet and where brilliant auroras occur.

Diagram of the effects of a solar flare.
Credit: NOAA

An international team of space scientists led by researchers from the University of New Hampshire have new findings on the first experimental evidence that points in a new direction toward the solution of a longstanding, central problem of plasma astrophysics and space physics.

Related Articles


The mystery involves electron acceleration during magnetic explosions that occur, for example, in solar flares and "substorms" in the Earth's magnetosphere - the comet-shaped protective sheath that surrounds the planet and where brilliant auroras occur.

During solar flares, accelerated electrons take away up to 50 percent of the total released flare energy. How so many electrons are accelerated to such high energies during these explosive events in our local part of the universe has remained unexplained.

A mainstream theory holds that the mysterious, fast-moving electrons are primarily accelerated at the magnetic explosion site - called the reconnection layer - where the magnetic fields are annihilated and the magnetic energy is rapidly released. However, physicist Li-Jen Chen of the Space Science Center within the UNH Institute for the Study of Earth, Oceans, and Space discovered that the most powerful electron acceleration occurs in the regions between adjacent reconnection layers, in structures called magnetic islands.

When Chen analyzed 2001 data from the four-spacecraft Cluster satellite mission, which has been studying various aspects of Earth's magnetosphere, she found a series of reconnection layers and islands that were formed due to magnetic reconnection.

"Our research demonstrates for the first time that energetic electrons are found most abundantly at sites of compressed density within islands," reports Chen.

Another recent theory, published in the journal Nature, has suggested that "contracting magnetic islands" provide a mechanism for electron acceleration. While the theory appears relevant, it needs to be developed further and tested by computer simulations and experiments, according to the UNH authors.

Until the UNH discovery there had been no evidence showing any association between energetic electrons and magnetic islands. This lack of data is likely due to the fact that encounters of spacecraft with active magnetic explosion sites are rare and, if they do occur, there is insufficient time resolution of the data to resolve island structures.

In the Nature Physics paper, entitled "Observation of energetic electrons within magnetic islands," lead author Chen reports the first experimental evidence for the one-to-one correspondence between multiple magnetic islands and energetic electron bursts during reconnection in the Earth's magnetosphere.

"Our study is an important step towards solving the mystery of electron acceleration during magnetic reconnection and points out a clear path for future progress to be made," says Chen. UNH collaborators on the paper include Amitava Bhattacharjee, Pamela Puhl-Quinn, Hong-ang Yang, and Naoki Bessho.

This research was published recently in the journal Nature Physics.


Story Source:

The above story is based on materials provided by University of New Hampshire. Note: Materials may be edited for content and length.


Cite This Page:

University of New Hampshire. "First Findings On Key Astrophysics Problem." ScienceDaily. ScienceDaily, 3 December 2007. <www.sciencedaily.com/releases/2007/11/071128151753.htm>.
University of New Hampshire. (2007, December 3). First Findings On Key Astrophysics Problem. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2007/11/071128151753.htm
University of New Hampshire. "First Findings On Key Astrophysics Problem." ScienceDaily. www.sciencedaily.com/releases/2007/11/071128151753.htm (accessed October 23, 2014).

Share This



More Space & Time News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins