Featured Research

from universities, journals, and other organizations

Better Membranes For Water Treatment, Drug Delivery Developed

Date:
December 5, 2007
Source:
University of Illinois at Urbana-Champaign
Summary:
Researchers have developed a new generation of biomimetic membranes for water treatment and drug delivery. The highly permeable and selective membranes are based on the incorporation of the functional water channel protein Aquaporin Z into a novel A-B-A triblock copolymer.

Mark Clark, a professor of civil and environmental engineering, and colleagues have developed a new generation of biomimetic membranes for water treatment and drug delivery.
Credit: Image courtesy of University of Illinois at Urbana-Champaign

Researchers at the University of Illinois have developed a new generation of biomimetic membranes for water treatment and drug delivery. The highly permeable and selective membranes are based on the incorporation of the functional water channel protein Aquaporin Z into a novel A-B-A triblock copolymer.

The experimental membranes, currently in the form of vesicles, show significantly higher water transport than existing reverse-osmosis membranes used in water purification and desalination.

"We took a close look at how kidneys so efficiently transport water through a membrane with aquaporins, and then we found a way to duplicate that in a synthetic system," said Manish Kumar, a graduate research assistant at the U. of I., and the paper's lead author.

Unlike most biological membranes, polymer membranes are very stable and can withstand considerable pressure -- essential requirements for water purification and desalination processes. "Placing aquaporins in materials that we can use outside the body opens doors to industrial and municipal applications," Kumar said.

To make their protein-polymer membranes, the researchers begin with a polymer that self-assembles into hollow spheres called vesicles. While the polymer is assembling, the researchers add Aquaporin Z -- a protein found in Escherichia coli bacteria.

"Aquaporin Z makes a hole in the membrane that only water can go through, so it's both fast and selective," said membrane specialist Mark Clark, a professor of civil and environmental engineering and one of the paper's co-authors.

"By varying the amount of Aquaporin Z, we can vary the membrane's permeability," Kumar said, "which could be very useful for drug-delivery applications."

With their high permeability and high selectivity, the biomimetic membranes also are ideal for water treatment by desalination, which is becoming increasingly important for water purification in semiarid coastal regions.

When tested, the productivity of the Aquaporin Z-incorporated polymer membranes was more than 10 times greater than other salt-rejecting polymeric membranes.

Currently, the experimental polymer membranes exist only as small vesicles. "Our next step is to convert the vesicles into larger, more practical membranes," Kumar said. "We also want to optimize the membranes for maximum permeability."

The researchers describe their membranes in detail in a paper accepted for publication in the Proceedings of the National Academy of Sciences.  The paper is to be published in PNAS Online Early Edition.

In addition to Clark and Kumar, co-authors of the paper are research professor Julie Zilles at the U. of I., and chemistry professor Wolfgang Meier and doctoral student Mariusz Grzelakowski, both at the University of Basel in Switzerland.

Funding was provided by the Swiss National Center of Competence in Nanoscale Science, the Swiss National Science Foundation and the University of Illinois.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Better Membranes For Water Treatment, Drug Delivery Developed." ScienceDaily. ScienceDaily, 5 December 2007. <www.sciencedaily.com/releases/2007/11/071129121129.htm>.
University of Illinois at Urbana-Champaign. (2007, December 5). Better Membranes For Water Treatment, Drug Delivery Developed. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2007/11/071129121129.htm
University of Illinois at Urbana-Champaign. "Better Membranes For Water Treatment, Drug Delivery Developed." ScienceDaily. www.sciencedaily.com/releases/2007/11/071129121129.htm (accessed April 24, 2014).

Share This



More Earth & Climate News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
California Drought Is Good News for Gold Prospectors

California Drought Is Good News for Gold Prospectors

AFP (Apr. 22, 2014) — For months California has suffered from a historic drought. The lack of water is worrying for farmers and ranchers, but for gold diggers it’s a stroke of good fortune. With water levels low, normally inaccessible areas are exposed. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com
Raw: MN Lakes Still Frozen Before Fishing Opener

Raw: MN Lakes Still Frozen Before Fishing Opener

AP (Apr. 22, 2014) — With only three weeks until Minnesota's fishing opener, many are wondering if the ice will be gone. Some of the Northland lakes are still covered by up to three feet of ice, causing concern that just like last year, the lakes won't be ready. (April 22) Video provided by AP
Powered by NewsLook.com
Scientists Warn Of Likely El Niño Event This Year

Scientists Warn Of Likely El Niño Event This Year

Newsy (Apr. 22, 2014) — With Pacific ocean water already showing signs of warming, the NOAA says there's about a 66 percent chance the event will begin before November. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins