Featured Research

from universities, journals, and other organizations

Compact, Wavelength-on-demand Quantum Cascade Laser Chip Offers Ultra-sensitive Chemical Sensing

Date:
December 6, 2007
Source:
Harvard University
Summary:
Engineers have demonstrated a highly versatile, compact and portable Quantum Cascade Laser sensor for the fast detection of a large number of chemicals, ranging from infinitesimal traces of gases to liquids, by broad tuning of the emission wavelength. The potential range of applications is huge, including homeland security, medical diagnostics such as breadth analysis, pollution monitoring, and environmental sensing of the greenhouse gases responsible for global warming.

Engineers from Harvard University have demonstrated a highly versatile, compact and portable Quantum Cascade Laser sensor for the fast detection of a large number of chemicals, ranging from infinitesimal traces of gases to liquids, by broad tuning of the emission wavelength. The potential range of applications is huge, including homeland security, medical diagnostics such as breadth analysis, pollution monitoring, and environmental sensing of the greenhouse gases responsible for global warming.

Related Articles


The team is headed by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and includes graduate student Benjamin Lee, researchers Mikhail Belkin and Jim MacArthur, and undergraduate Ross Audet, all of Harvard's School of Engineering and Applied Sciences.

The broad emission spectrum of the Quantum Cascade Laser material, grown by a commercial reactor used for the mass production of semiconductor lasers, is designed using state-of-the-art nanotechnology by controlling the size of nanometric thin quantum wells in the active region. An array of 32 lasers, each designed to emit at a specific wavelength, is then fabricated on a single chip by standard semiconductor processing techniques to have a size of less than one-fourth of a dime. A microcomputer individually fires up and tunes each laser in the array in any desired sequence. This generates a broad and continuously tunable wavelength spectrum that can be used to detect a large number of chemical compounds.

"Our versatile laser spectrometer currently emits any wavelengths between 8.7 and 9.4 microns, in the so-called 'molecular fingerprint region' where most molecules have their telltale absorption features which uniquely identify them," Belkin says. "This ability to design a broad laser spectrum anywhere in the fingerprint region holds the promise of replacing the bulky and large infrared spectrometers currently used for chemical analysis and sensing."

The tunability of the laser chip can be extended up to 10-fold and several widely spaced absorption features can be targeted with the same chip, which will enable the detection in parallel of an extremely large number of trace gases in concentrations of parts per billion in volume. A portable compact spectrometer with this capability would revolutionize chemical sensing.

"These millimeter-size laser chips exploit the inherent enormous wavelength agility of state-of-the-art Quantum Cascade Lasers," says Capasso, who co-invented them in 1994 at Bell Labs. "As a first application we have shown that these widely tunable and extremely compact sensors can measure the spectrum of liquids with the same accuracy and reproducibility of state-of-the-art infrared spectrometers, but with inherently greater spectral resolution."

This research is published in the Dec. 3 issue of Applied Physics Letters.

The team's co-authors are research associates Laurent Diehl and Christian Pflόgl of Harvard's School of Engineering and Applied Sciences; Doug Oakley, David Chapman, and Antonio Napoleone of MIT Lincoln Laboratory; David Bour, Scott Corzine, and Gloria Hφfler, all formerly with Agilent Technologies; and Jιrτme Faist of ETH Zurich. The research was supported by DARPA's Optofluidics Center. The authors also acknowledge the support of Harvard's Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

The researchers have filed for U.S. patents covering this new class of laser chips.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "Compact, Wavelength-on-demand Quantum Cascade Laser Chip Offers Ultra-sensitive Chemical Sensing." ScienceDaily. ScienceDaily, 6 December 2007. <www.sciencedaily.com/releases/2007/12/071203111254.htm>.
Harvard University. (2007, December 6). Compact, Wavelength-on-demand Quantum Cascade Laser Chip Offers Ultra-sensitive Chemical Sensing. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2007/12/071203111254.htm
Harvard University. "Compact, Wavelength-on-demand Quantum Cascade Laser Chip Offers Ultra-sensitive Chemical Sensing." ScienceDaily. www.sciencedaily.com/releases/2007/12/071203111254.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) — A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) — The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) — The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins