Featured Research

from universities, journals, and other organizations

New Oil-repelling Material Created

Date:
December 15, 2007
Source:
Massachusetts Institute of Technology
Summary:
Engineers have designed the first simple process for manufacturing materials that strongly repel oils. The material, which can be applied as a flexible surface coating, could have applications in aviation, space travel and hazardous waste cleanup.

A droplet of water forms a bead on the surface of a lotus left, top left, while a drop of hexadecane soaks the surface, top right. After the lotus leaf is coated with a new oil-repelling material developed at MIT, water still beads up, bottom left, and so does hexadecane, bottom right. Inset photo in the top left square shows an SEM micrograph of the lotus leaf surface.
Credit: Image courtesy / Anish Tuteja and Wonjae Choi, MIT

MIT engineers have designed the first simple process for manufacturing materials that strongly repel oils. The material, which can be applied as a flexible surface coating, could have applications in aviation, space travel and hazardous waste cleanup.

For example, the material could be used to help protect parts of airplanes or rockets that are vulnerable to damage from being soaked in fuel, such as rubber gaskets and o-rings.

"These are vulnerable points in many aerospace applications" said Robert Cohen, the St. Laurent Professor of Chemical Engineering and an author of a paper on the work that will appear in the Dec. 7 issue of Science.

"It would be nice if you could spill gasoline on a fabric or a gasket or other surface and find that instead of spreading, it just rolled off," Cohen said.

Creating a strongly oil-repelling, or "oleophobic" material, has been challenging for scientists, and there are no natural examples of such a material.

"Nature has developed a lot of methods for waterproofing, but not so much oil-proofing," said Gareth McKinley, MIT School of Engineering Professor of Teaching Innovation in the Department of Mechanical Engineering and a member of the research team. "The conventional wisdom was that it couldn't be done on a large scale without very special lithographic processes."

The tendency of oils and other hydrocarbons to spread out over surfaces is due to their very low surface tension (a measure of the attraction between molecules of the same substance).

Water, on the other hand, has a very high surface tension and tends to form droplets. For example, beads of water appear on a freshly waxed car (however, over a period of time, oil and grease contaminate the surface and the repellency fades). That difference in surface tension also explains why water will roll off the feathers of a duck, but a duck coated in oil must be washed with soap to remove it.

The MIT team overcame the surface-tension problem by designing a material composed of specially prepared microfibers that essentially cushion droplets of liquid, allowing them to sit, intact, just above the material's surface.

When oil droplets land on the material, which resembles a thin fabric or tissue paper, they rest atop the fibers and pockets of air trapped between the fibers. The large contact angle between the droplet and the fibers prevents the liquid from touching the bottom of the surface and wetting it.

The microfibers are a blend of a specially synthesized molecule called fluoroPOSS, which has an extremely low surface energy, and a common polymer. They can be readily deposited onto many types of surfaces, including metal, glass, plastic and even biological surfaces such as plant leaves, using a process known as electrospinning.

The researchers have also developed some dimensionless design parameters that can predict how stable the oleophobicity or oil-resistance between a particular liquid and a surface will be. These design equations are based on structural considerations, particularly the re-entrant nature (or concavity) of the surface roughness, and on three other factors: the liquid's surface tension, the spacing of the fibers, and the contact angle between the liquid and a flat surface.

Using these relationships, the researchers can design fiber mats that are optimized to repel different hydrocarbons. They have already created a non-woven fabric that can separate water and octane (jet fuel), which they believe could be useful for hazardous waste cleanup.

The Air Force, which funded the research and developed the fluoroPOSS molecules, is interested in using the new material to protect components of airplanes and rockets from jet fuel.

Lead author of the paper is Anish Tuteja, a postdoctoral associate in MIT's Department of Chemical Engineering. Other MIT authors are Wonjae Choi, graduate student in mechanical engineering, Minglin Ma, graduate student in chemical engineering, and Gregory Rutledge, professor of chemical engineering. Joseph Mabry and Sarah Mazzella of the Air Force Research Laboratory at Edwards Air Force Base are also authors on the paper.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "New Oil-repelling Material Created." ScienceDaily. ScienceDaily, 15 December 2007. <www.sciencedaily.com/releases/2007/12/071206145231.htm>.
Massachusetts Institute of Technology. (2007, December 15). New Oil-repelling Material Created. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2007/12/071206145231.htm
Massachusetts Institute of Technology. "New Oil-repelling Material Created." ScienceDaily. www.sciencedaily.com/releases/2007/12/071206145231.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins