Featured Research

from universities, journals, and other organizations

How Windproof Are Cable Cars?

Date:
January 4, 2008
Source:
Vienna University of Technology
Summary:
A measuring system deals with the question as to the effects different wind loads have on cable cars. Two researchers have thrown light on vibration-control problems, an area little researched up to now and were able to account for the occurrence of lateral vibrations from various wind conditions right through to meteorological calm.

Chair lift.
Credit: Image courtesy of Vienna University of Technology

A measuring system deals with the question as to the effects different wind loads have on cable cars. Two researchers from the Vienna University of Technology (TU) have thrown light on vibration-control problems, an area little researched up to now and were able to account for the occurrence of lateral vibrations from various wind conditions right through to meteorological calm.

A measuring system which also measures wind direction and wind velocity on a two or three-dimensional basis is positioned on the cab of a cable car or on the chair of a chair lift. The behaviour of the vehicle on impact of the wind can thereby be measured in a wholly self-supporting manner. A dip in a transverse and longitudinal direction when vibrating, the driving speed and the position of the vehicle en route are of particular importance in this regard.

Observations by operating personnel of certain cable car systems have shown that a lateral vibration of the pendulum with large tilt angles can occur not only when the crosswind is blowing gustily but also when the wind is calm. In the meantime this has been quantified using measurement data.

"On the basis of this measurement data, we confirmed that the cabs undergo vibratory excitation due to continuously circulating bicable tramways at certain velocities. In the case of certain continuously circulating bicable tramways, this phenomenon is manifested at a lower driving speed range of approximately 2.0 to 3.0 metres per second. Normal driving speeds lie between 4 and 6 m/s“, says Klaus Hoffmann, head of the Institute for Engineering Design and Logistics Engineering at the TU Vienna.

The measurements confirmed the suspicion that the afore-mentioned oscillations are due to periodical vortex shedding in the cab originating with the airsteam. Particularly strong vibrations occur when the vortex shedding frequency is identical to the natural frequency of the cab. Basically, the phenomenon can only be avoided if longer journeys are carried out at a driving speed range between 2 and 3 m/s.

"Thanks to the extensive European set of standards in accordance with which the cable cars are manufactured, there is a very high internationally comparable safety level today. Each cable car must undergo certain safety checks before it may be used by the operating company. Neveretheless, questions concerning the windproof capacity of cable cars in instruction manuals are often kept vague. Thus, the instruction manuals for monocable aerial ropeways, chair lifts or cabin tramways state the wind velocity at which the tramway can continue to be operated.

At a constant crosswind of 50 to 65 km/h the availability limit of monocable aerial ropeways has normally been attained“, says Robert Liehl, a doctoral candidate at the institute. Apart from wind sensors on the supports whose data is only partly representative for wind conditions along the entire cable car, the entire cable line must also be monitored in these situations by the operating personnel using a pair of binoculars. Hoffmann: „Even for lower average wind velocities, sudden gusts of wind can lead to critical situations. Our measurement data should supply additional information to be able to provide more accurate details of the vibration behaviour of cable car vehicles during different operating conditions.“

During this research project the measuring system was patented in 2002 and has since then been used to carry out field measurements of wind loads and pendulum vibrations for different cable cars and chair lifts. Thanks to the support of the two world market leaders in cable car construction - Doppelmayr and Leitner – this measurement system can continue to be developed further.


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Vienna University of Technology. "How Windproof Are Cable Cars?." ScienceDaily. ScienceDaily, 4 January 2008. <www.sciencedaily.com/releases/2007/12/071216142011.htm>.
Vienna University of Technology. (2008, January 4). How Windproof Are Cable Cars?. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2007/12/071216142011.htm
Vienna University of Technology. "How Windproof Are Cable Cars?." ScienceDaily. www.sciencedaily.com/releases/2007/12/071216142011.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Reuters - US Online Video (Oct. 21, 2014) Major automakers are recalling millions of vehicles due to potentially defective front passenger air bag inflators that can rupture and spray metal shrapnel. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins