Featured Research

from universities, journals, and other organizations

White Dwarf Pulses Like A Pulsar

Date:
January 3, 2008
Source:
NASA/Goddard Space Flight Center
Summary:
New observations have challenged scientists' conventional understanding of white dwarfs. Observers had believed white dwarfs were inert stellar corpses that slowly cool and fade away, but the new data tell a completely different story.

The white dwarf in the AE Aquarii system is the first star of its type known to give off pulsar-like pulsations that are powered by its rotation and particle acceleration.
Credit: Casey Reed

New observations from Suzaku, a joint Japanese Aerospace Exploration Agency (JAXA) and NASA X-ray observatory, have challenged scientists’ conventional understanding of white dwarfs. Observers had believed white dwarfs were inert stellar corpses that slowly cool and fade away, but the new data tell a completely different story.

At least one white dwarf, known as AE Aquarii, emits pulses of high-energy (hard) X-rays as it whirls around on its axis. "We’re seeing behavior like the pulsar in the Crab Nebula, but we’re seeing it in a white dwarf," says Koji Mukai of NASA Goddard Space Flight Center in Greenbelt, Md. The Crab Nebula is the shattered remnant of a massive star that ended its life in a supernova explosion. "This is the first time such pulsar-like behavior has ever been observed in a white dwarf." Mukai is co-author of a paper presented at a Suzaku science conference in San Diego, Calif., in December.

White dwarfs and pulsars represent distinct classes of compact objects that are born in the wake of stellar death. A white dwarf forms when a star similar in mass to our sun runs out of nuclear fuel. As the outer layers puff off into space, the core gravitationally contracts into a sphere about the size of Earth, but with roughly the mass of our sun. The white dwarf starts off scorching hot from the star’s residual heat. But with nothing to sustain nuclear reactions, it slowly cools over billions of years, eventually fading to near invisibility as a black dwarf.

A pulsar is a type of neutron star, a collapsed core of an extremely massive star that exploded in a supernova. Whereas white dwarfs have incredibly high densities by earthly standards, neutron stars are even denser, cramming roughly 1.3 solar masses into a city-sized sphere. Pulsars give off radio and X-ray pulsations in lighthouse-like beams.

The discovery team, led by Yukikatsu Terada of the Institute of Physical and Chemical Research (RIKEN) in Wako, Japan, was not expecting to find a white dwarf mimicking a pulsar. Instead, the astronomers were hoping to find out if white dwarfs could accelerate charged subatomic particles to near-light speed, meaning they could be responsible for many of the cosmic rays that zip through our galaxy and occasionally strike Earth.

Some white dwarfs, including AE Aquarii, spin very rapidly and have magnetic fields millions of times stronger than Earth’s. These characteristics give them the energy to generate cosmic rays.

To find out if this is happening, Terada and his colleagues targeted AE Aquarii with Suzaku in October 2005 and October 2006. The white dwarf resides in a binary system with a normal companion star. Gas from the star spirals toward the white dwarf and heats up, giving off a glow of low-energy (soft) X-rays. But Suzaku also detected sharp pulses of hard X-rays. After analyzing the data, the team realized that the hard X-ray pulses match the white dwarf’s spin period of once every 33 seconds.

The hard X-ray pulsations are very similar to those of the pulsar in the center of the Crab Nebula. In both objects, the pulses appear to be radiated like a lighthouse beam, and a rotating magnetic field is thought to be controlling the beam. Astronomers think that the extremely powerful magnetic fields are trapping charged particles and then flinging them outward at near-light speed. When the particles interact with the magnetic field, they radiate X-rays.

"AE Aquarii seems to be a white dwarf equivalent of a pulsar," says Terada. "Since pulsars are known to be sources of cosmic rays, this means that white dwarfs should be quiet but numerous particle accelerators, contributing many of the low-energy cosmic rays in our galaxy."

Launched in 2005, Suzaku is the fifth in a series of Japanese satellites devoted to studying celestial X-ray sources. Managed by JAXA, this mission is a collaborative effort between Japanese universities and institutions and Goddard.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "White Dwarf Pulses Like A Pulsar." ScienceDaily. ScienceDaily, 3 January 2008. <www.sciencedaily.com/releases/2008/01/080102155439.htm>.
NASA/Goddard Space Flight Center. (2008, January 3). White Dwarf Pulses Like A Pulsar. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/01/080102155439.htm
NASA/Goddard Space Flight Center. "White Dwarf Pulses Like A Pulsar." ScienceDaily. www.sciencedaily.com/releases/2008/01/080102155439.htm (accessed April 18, 2014).

Share This



More Space & Time News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com
Spacecrafts Could Use Urine As Fuel Source

Spacecrafts Could Use Urine As Fuel Source

Newsy (Apr. 15, 2014) New research says the urea from urine could be recycled for fuel. Urea is filtered out of wastewater when making drinking water. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins