Featured Research

from universities, journals, and other organizations

High-energy Ultrasound Sharpens View Of Liver Tumors

Date:
January 11, 2008
Source:
Duke University
Summary:
A high-energy form of ultrasound imaging produces pictures of liver tumors that are better than those made with traditional ultrasound, according to results of a clinical study. The study suggests that the imaging method known as Acoustic Radiation Force Impulse ultrasound might offer a new tool for screening patients at increased risk for liver cancers, according to the researchers.

The imaging method known as Acoustic Radiation Force Impulse (ARFI) ultrasound might offer a new tool for screening patients at increased risk for liver cancers, according to researchers.
Credit: Image courtesy of Pratt School of Engineering, Duke University

A high-energy form of ultrasound imaging developed by researchers at Duke University's Pratt School of Engineering produces pictures of liver tumors that are better than those made with traditional ultrasound, according to results of a clinical study.

The study suggests that the imaging method known as Acoustic Radiation Force Impulse (ARFI) ultrasound might offer a new tool for screening patients at increased risk for liver cancers, according to the researchers. They say it might also play a useful role in guiding biopsy procedures and minimally invasive therapies aimed at destroying cancerous tissues found deep in the abdomen.

First developed six years ago by Duke biomedical engineers Gregg Trahey and Kathy Nightingale, ARFI uses high-energy sound waves to push on tissues like sonic fingers. A tracking beam then captures the movement of the tissue, providing a measure of its elasticity or stiffness.

"To our knowledge, these are the first images of abdominal malignancies in humans that show tissue elasticity," said Trahey, professor of biomedical engineering, radiology and medical physics at Duke. The preliminary findings, which represent the Ph.D. thesis work of Trahey's former graduate student Brian Fahey, have already led Siemens to pursue a product prototype that will combine traditional ultrasound with ARFI, he added.

In general, primary liver cancers are soft while those that have spread from other organs are hard. ARFI may be able to tell the difference between hard and soft tumors, Trahey said. "If borne out in further studies, [that discriminating ability] suggests that ARFI may be useful in guiding treatment decisions."

"All current imaging methods--including CT, MRI and ultrasound--have mediocre performance in the detection of early liver cancers," he added. "There is a potential role for ARFI because it is low cost and can be built on conventional ultrasound machines."

Traditional ultrasound is now the guidance method of choice in many hospitals for procedures targeting the liver, kidneys, pancreas and lymph nodes, Trahey said. Ultrasound has advantages in that it is widely available, low cost and doesn't expose patients to ionizing radiation. However, a significant number of tumors are difficult to see with this method, requiring physicians to resort to alternatives such as CT and MRI, which add to the complexity and cost.

In the new study, the researchers captured ARFI images of 12 tumors in nine patients, including seven liver and two kidney tumors, and compared them to traditional ultrasound. The ARFI pictures showed greater contrast than standard ultrasound, providing clearer definition of the edges of cancerous masses.

The researchers reported their findings Jan. 7 in the journal Physics in Medicine and Biology. The work was funded by the National Institutes of Health with system support from Siemens Medical Solutions.

Collaborators on the study included Rendon Nelson, vice chairman of radiology at Duke, along with David Bradway, Stephen Hsu and Douglas Dumont, all biomedical engineering graduate students at Duke's Pratt School.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "High-energy Ultrasound Sharpens View Of Liver Tumors." ScienceDaily. ScienceDaily, 11 January 2008. <www.sciencedaily.com/releases/2008/01/080107181336.htm>.
Duke University. (2008, January 11). High-energy Ultrasound Sharpens View Of Liver Tumors. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2008/01/080107181336.htm
Duke University. "High-energy Ultrasound Sharpens View Of Liver Tumors." ScienceDaily. www.sciencedaily.com/releases/2008/01/080107181336.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins