Featured Research

from universities, journals, and other organizations

Stem Cells Make Bone Marrow Cancer Resistant To Treatment

Date:
January 14, 2008
Source:
Johns Hopkins Medical Institutions
Summary:
Scientists say they have evidence that cancer stem cells for multiple myeloma share many properties with normal stem cells and have multiple ways of resisting chemotherapy and other treatments.

Scientists at the Johns Hopkins Kimmel Cancer Center say they have evidence that cancer stem cells for multiple myeloma share many properties with normal stem cells and have multiple ways of resisting chemotherapy and other treatments.

Related Articles


A report on the evidence, published in the Jan. 1 issue of the journal Cancer Research, may explain why the disease is so persistent, the Johns Hopkins scientists say, and pave the way for treatments that overcome the cells' drug resistance. Multiple myeloma affects bone marrow and bone tissue.

"Cancer stem cells that have distinct biology and drug sensitivity as compared with the bulk of a cancer may explain why multiple myeloma, like many other cancers, so often relapses even after chemotherapy puts patients into remission," says Richard J. Jones, M.D., professor and director of bone marrow transplant at Hopkins' Kimmel Cancer Center and one of the scientists who authored the new report.

The existence of cancer stem cells - a topic of some controversy in cancer biology - is seen by some scientists as a useful explanation for the long history of difficulty in overcoming some cancers' persistence.

The Hopkins investigators previously had uncovered a rare stem cell in myeloma, accounting for less than one percent of all the cancer's cells. Working with cell samples from myeloma patients, the team found that this stem cell originates from immune system B-cells and is capable of giving rise to the malignant bone marrow cells characteristic of the disease.

In the current study, the scientists isolated stem cells from the blood of four patients with multiple myeloma and transplanted them into mice. All of the animals developed hind-limb paralysis and showed signs of cancer in the bone marrow. By contrast, plasma cells that were transplanted from multiple myeloma patients to mice did not engraft. The Hopkins scientists say that recreating the disease in mice provides more evidence that these cells act as cancer stem cells.

The Johns Hopkins scientists also compared the response of these special stem cells with the bulk of multiple myeloma plasma cells, to four different chemotherapy medications commonly used to treat patients with the disease: dexamethasone, lenadilomide, bortezomib and 4-hydroxycyclophosphamide. While all four agents significantly inhibited the growth of the plasma cells, none inhibited the stem cells.

To their surprise, the research team noted that the multiple myeloma stem cells resemble other types of adult stem cells and exhibit similar properties that may make them resistant to chemotherapy. They found that the stem cells contain high levels of enzymes that neutralize toxins, like cancer drugs, and expel them through miniature pumps on their cell surface. The investigators believe that these drug-fighting enzymes and pumps - also plentiful in normal stem cells - may help cancer stem cells resist treatment.

"Nature made normal stem cells very hearty for a reason, namely to survive and help repair damaged tissues and organs after injury or illness," says William Matsui, M.D., an assistant professor of oncology at Hopkins and the study's lead investigator. "To us, it makes sense that the same processes that protect normal stem cells also exist in cancer stem cells to make them resistant to chemotherapy. We need to develop new ways to target the specific biology of cancer stem cells to prevent the continued production of mature tumor cells and disease relapse."

"Standard cancer therapy is like mowing the weed - it gets rid of the disease transiently but the dandelion always grows back. We need to get rid of the root to cure disease, and therefore need a different type of therapy - mowing won't work," says Jones.

Matsui says the work also may make it possible to track the rare myeloma stem cells as a marker of how well a patient is doing during treatment.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.

The study was supported by the National Institutes of Health, the American Society of Clinical Oncology and the Pearse family. Additional participants in the research were Qiuju Wang, James P. Barber, Sarah Brennan, B. Douglas Smith, Ivan Borrello, Ian McNiece, Lan Lin, Richard F. Ambinder, Craig Peacock, D. Neil Watkins and Carol Ann Huff from Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Stem Cells Make Bone Marrow Cancer Resistant To Treatment." ScienceDaily. ScienceDaily, 14 January 2008. <www.sciencedaily.com/releases/2008/01/080111123313.htm>.
Johns Hopkins Medical Institutions. (2008, January 14). Stem Cells Make Bone Marrow Cancer Resistant To Treatment. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2008/01/080111123313.htm
Johns Hopkins Medical Institutions. "Stem Cells Make Bone Marrow Cancer Resistant To Treatment." ScienceDaily. www.sciencedaily.com/releases/2008/01/080111123313.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins