Featured Research

from universities, journals, and other organizations

Engineering Chimeric Polypeptides To Illuminate Cellular Redox States

Date:
January 23, 2008
Source:
Society for Experimental Biology and Medicine
Summary:
Researchers have designed chimeric redox-sensitive polypeptides as the first step towards development of the FRET-based biosensors for visualizing redox potentials and oxidative stress in live cells via optical microscopy. The FRET-based biosensors are a significant advance for routinely measuring oxidative stress in real time. They promise to be broadly applicable by biomedical researchers working in diverse fields of cellular biology.

The principle by which the proposed redox biosensors work is illustrated in the figure above.
Credit: Society for Experimental Biology and Medicine

UIUC interdisciplinary team reports the design of chimeric polypeptides leading to development of noninvasive biosensors for potential application in biomedical research.

Related Articles


Reduction/oxidation (redox) systems research is reaching a stage where domains that traditionally belonged to the physical sciences, chemistry, and molecular biology are coming together to offer new synergistic opportunities for understanding and manipulating basic cellular processes that underlie complex biomedical problems (e.g., tumorigenesis). Parallel with this advance is the emerging recognition that the intracellular redox environment exerts a profound influence on the normal cellular processes of DNA synthesis, enzyme activation, selective gene expression, cell cycle progression, proliferation, differentiation, and apoptosis. However, this is a difficult area of study and molecular mechanisms mediating redox sensitivity are poorly defined.

An interdisciplinary research team from the University of Illinois' Institute for Genomic Biology (IGB) report in the February issue of the journal Experimental Biology and Medicine the engineering of novel peptide sequences that are sensitive to redox conditions inside cells.

"Attachment of linkers between a special pair of green fluorescent proteins (GFP) shows great promise for developing genetically encoded redox sensitive biosensors," said Vladimir L. Kolossov, corresponding author. To detect oxidation and reduction, the biosensor uses a powerful optical technique called Fφrster resonance energy transfer (FRET).

The absence of polypeptide linkers able to sense the redox state by undergoing a conformational change was the major obstacle to a FRET-based redox sensor. The researchers designed the linker sequence such that in its reduced state the linker is an ±-helix. Thiol groups, strategically placed throughout the linker, sense the redox potential of the environment and form disulfide bonds upon oxidation.

Under oxidative conditions intramolecular disulfide bonds can form, shifting the free energy minimum from the ±-helix, to a "clamped-coil" state (similar to a helix-coil transition). The coiled state allows the two fluorescent proteins to approach closer than in the extended helix state, where they can more efficiently exchange excitation energy (i.e., a high FRET state). The extent of energy transfer is easily quantified from the increased emission of the acceptor.

This is the first step towards development of a FRET-based biosensor for visualizing redox potentials and oxidative stress in live cells and tissues via optical microscopy.

"We employed a sensitive technique for measuring FRET to screen our linkers. This methodology greatly expedited the quantitative analysis and development of the linkers and will be very useful for the development of other FRET-based sensors," said Bryan Q. Spring, a doctoral student and co-author of the publication. Given the importance of the intracellular redox state in determining a cell's fate, and the increasing evidence that perturbations in the redox state are associated with cancer and various inflammatory disorders as well as aging, FRET-based redox sensors offer significant promise for understanding molecular mechanisms underlying human health and disease.

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "Altered redox status is a hallmark of many diseases ranging from neurological disorders, such as Alzheimer's Disease, to hematologic disorders such as Sickle Cell Disease. The development of a FRET-based biosensor to measure oxidative stress in living cells would be of enormous benefit to biomedical researchers working in many diverse fields. This is precisely the type of interdisciplinary effort that the new Experimental Biology and Medicine hopes to provide to the international scientific community."


Story Source:

The above story is based on materials provided by Society for Experimental Biology and Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Society for Experimental Biology and Medicine. "Engineering Chimeric Polypeptides To Illuminate Cellular Redox States." ScienceDaily. ScienceDaily, 23 January 2008. <www.sciencedaily.com/releases/2008/01/080123173151.htm>.
Society for Experimental Biology and Medicine. (2008, January 23). Engineering Chimeric Polypeptides To Illuminate Cellular Redox States. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/01/080123173151.htm
Society for Experimental Biology and Medicine. "Engineering Chimeric Polypeptides To Illuminate Cellular Redox States." ScienceDaily. www.sciencedaily.com/releases/2008/01/080123173151.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins