Featured Research

from universities, journals, and other organizations

Treatment Capitalizes On Unique Qualities Of Radioisotope To Prolong Lives Of Brain Tumor Patients

Date:
February 3, 2008
Source:
Society of Nuclear Medicine
Summary:
In a study to determine safe dosages of the isotope astatine-211 for patients with recurring brain tumors, researchers were pleasantly surprised to find that not only was the isotope's potency sufficient to kill residual cancer cells without damaging sensitive healthy brain cells, but the patients experienced longer survival rates.

In a study to determine safe dosages of the isotope astatine-211 for treating patients with recurring brain tumors, researchers were pleasantly surprised to find that not only was the isotope's potency sufficient to kill residual cancer cells without damaging sensitive healthy brain cells, but the patients experienced longer survival rates.

"Astatine-211 has as much as five times or more cell-killing efficiency than the standard treatments of external beam radiation or beta-particle injection," said Michael R. Zalutsky, professor of radiology and biomedical engineering at Duke University Medical Center in Durham, N.C. The ability to deliver such a potent cancer killer without causing neurotoxicity (damage to the delicate neurological system that controls brain function) would be a tremendous step forward in combating this lethal disease, he said.

In the past, surgeons have been able to remove the tumor bulk, Zalutsky added, but were unable to see and thereby identify any residual cancerous cells that had escaped into the margins of the healthy tissue surrounding the tumor. It is these cells, however, that continue to grow into new tumors and eventually kill the patient. Scientists have long believed that radioimmunotherapy (RIT) could be the best way to destroy these cells, but demonstrating the feasibility of delivering a sufficiently potent radioactive isotope without harming healthy brain tissue has been heretofore impossible.

In this study, reported in the Journal of Nuclear Medicine, astatine-211 was chemically linked to the antibody 81C6, known to seek out and bind specifically to brain cancer cells. It was then administered to 18 patients with recurrent malignant brain tumors by injection into a surgically created cavity from which the visible tumor had been removed. Because alpha particles, such as those emitted by astatine-211, are large and more highly charged, compared to the much smaller and faster beta particles, they are able to travel to a depth of only two to three cells into the affected area, which is enough to deliver the fatal payload. Compared to other alpha emitters, astatine-211 has a relatively short lifespan (approximately 7 hours), which means that the radioactivity falls off rapidly and patients experience few if any side effects.

In this first study evaluating astatine-211 as a targeted radiotherapeutic agent in cancer patients, researchers were expecting to determine only dose-limiting toxicity (the amount of isotope necessary to destroy the cancer without killing healthy tissue). In addition, they discovered that many patients experienced an extended survival rate, ranging from an average of 52 weeks to 3 years (compared to 26 weeks for most recurrent brain tumor patients).

Noting that brain tumors recur with an extremely poor prognosis, Zalutsky said, "There is an incredible need for brain cancer treatments, and this finding gives us a potentially valuable weapon in this fight."

Researchers say future studies may use a "radiotherapeutic cocktail" of both alpha and beta particles attached to the same monoclonal antibody to deliver a treatment with a wider range for larger tumors along with a more focused radiation for smaller tumors or residual cancer cells. Additional studies propose using astatine-211 on other "compartmentalized" cancers, such as ovarian and breast cancers that have spread to the central nervous system. All of these studies, however, will be delayed unless adequate quantities of astatine-211 can be produced.

"Right now in the United States, there are only three places where the isotope is produced," said Zalutsky, who contributed to the 2007 National Academy of Sciences report that encouraged Congress to increase funding for nuclear medicine research and treatment, including the production of promising isotopes such as astatine-211. "Patients eligible for such studies will be put on hold until our nation invests significantly in the research needed to eradicate these killer diseases."

According to the American Cancer Society, brain cancers are some of the most aggressive and deadly forms of cancer because they typically hide from the immune system and grow unchecked.

RIT is the use of an antibody (or protein produced by the immune system) that recognizes foreign substances, or antigens, and attaches to them. When these antigen-binding antibodies are chemically combined with a radioactive substance, they act as a "guided missile" to deliver a lethal dose of radiation directly to the tumor cells. The antibody's ability to bind to a tumor-associated antigen increases the dose delivered to the tumor cells while decreasing the dose to normal tissues.

Co-authors of "Clinical Experience with Alpha-Particle-Emitting astatine-211: Treatment of Recurrent Brain Tumor Patients with astatine-211-Labeled Chimeric Antitenascin Monolonal Antibody 81C6" include David A. Reardon, Preston Robert Tisch Brain Tumor Center and departments of pediatrics and surgery; Gamal Akabani, department of radiology; R. Edward Coleman, department of radiology; Allan H. Friedman, Preston Robert Tisch Brain Tumor Center and department of surgery; Henry S. Friedman, Preston Robert Tisch Brain Tumor Center and department of surgery; Roger E. McLendon, Preston Robert Tisch Brain Tumor Center and department of pathology; Terence Z. Wong, department of radiology; and Darell D. Bigner, Preston Robert Tisch Brain Tumor Center and department of pathology, all at Duke University Medical Center.


Story Source:

The above story is based on materials provided by Society of Nuclear Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Society of Nuclear Medicine. "Treatment Capitalizes On Unique Qualities Of Radioisotope To Prolong Lives Of Brain Tumor Patients." ScienceDaily. ScienceDaily, 3 February 2008. <www.sciencedaily.com/releases/2008/01/080130161750.htm>.
Society of Nuclear Medicine. (2008, February 3). Treatment Capitalizes On Unique Qualities Of Radioisotope To Prolong Lives Of Brain Tumor Patients. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/01/080130161750.htm
Society of Nuclear Medicine. "Treatment Capitalizes On Unique Qualities Of Radioisotope To Prolong Lives Of Brain Tumor Patients." ScienceDaily. www.sciencedaily.com/releases/2008/01/080130161750.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins