Featured Research

from universities, journals, and other organizations

Single-molecule Sensing Breakthrough: Optical and Electronic Measurements Made Simultanously

Date:
February 11, 2008
Source:
Rice University
Summary:
In a study that could lay the foundation for mass-produced single-molecule sensors, physicists and engineers have demonstrated a means of simultaneously making optical and electronic measurements of the same molecule. While scientists have used electronic and optical instruments to measure single molecules before, the new system is the first that allows both simultaneously -- a process known as "multimodal" sensing -- on a single small molecule.

Rice University scientists used tiny gaps in narrow gold wires to simultaneously capture electronic and optical measurements of the same molecule. These scanning electron images show the wires and gaps. The color insets are maps of optical signals from the gap.
Credit: D. Natelson/Rice University

In a study that could lay the foundation for mass-produced single-molecule sensors, physicists and engineers at Rice University have demonstrated a means of simultaneously making optical and electronic measurements of the same molecule.

The experiments were performed on a nanoelectronic device consisting to two tiny electrodes separated by a molecule-sized gap. Using electric current, the researchers measured conduction through single molecules in the gap. In addition, light-focusing properties of the electrodes allowed the researchers to identify the molecule by a unique optical fingerprint.

"We can mass-produce these in known locations, and they have single-molecule sensitivity at room temperature in open air," said study co-author Douglas Natelson, associate professor of physics and astronomy and co-director of Rice's Quantum Magnetism Laboratory (QML). "In principle, we think the design may allow us to observe chemical reactions at the single-molecule level."

While scientists have used electronic and optical instruments to measure single molecules before, Rice's system is the first that allows both simultaneously -- a process known as "multimodal" sensing -- on a single small molecule.

The research sprang from a collaboration between Natelson's group -- where the electrodes were developed -- and Rice's Laboratory for Nanophotonics (LANP), where the simultaneous electronic and optical testing was performed. In research published last year, the two groups explained how the electrodes focus near-infrared light into the molecule-sized gap, increasing light intensity in the gap by as much as a million times. The increased intensity allows the team to collect unique optical signatures for molecules trapped there via a technique called surface enhanced Raman spectroscopy (SERS).

"Our latest results confirm that we have the sensitivity required to measure single molecules," said LANP Director Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry. "That sensitivity, and the multimodal capabilities of this system, gives us a great tool for fundamental science at the nanoscale."

Daniel Ward, a student in Natelson's research group, built the electrodes from tiny gold wires on silicon wafers and performed the critical measurements. The group specializes in studying the electronic and magnetic properties of nanoscale objects -- particles and devices that are built with atomic precision. The devices are so small they can only be seen with certain types of microscopes, and even those provide unclear pictures at best. Natelson said the new multimodal device gives researchers a much clearer idea of what is going on by combining two different kinds of measurements, electronic and optical.

"Conduction across our electrodes is known to depend on a quantum effect called 'tunneling,'" Natelson said. "The gaps are so small that only one or two molecules contribute to the conduction. So when we get conduction, and we see the optical fingerprint associated with a particular molecule, and they track each other, then we know we're measuring a single molecule and we know what kind of molecule it is. We can even tell when it rotates and changes position."

The research, which is available online, is slated to appear in an upcoming issue of the journal Nano Letters.

Study co-authors include Jacob Ciszek, James Tour, Yanpeng Wu and Peter Nordlander, all of Rice. The research was sponsored by the National Science Foundation, the Welch Foundation, the Packard Foundation, the Sloan Foundation, the Research Corp., the Defense Advanced Research Projects Agency and the Air Force Office of Scientific Research.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Single-molecule Sensing Breakthrough: Optical and Electronic Measurements Made Simultanously." ScienceDaily. ScienceDaily, 11 February 2008. <www.sciencedaily.com/releases/2008/02/080206111247.htm>.
Rice University. (2008, February 11). Single-molecule Sensing Breakthrough: Optical and Electronic Measurements Made Simultanously. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2008/02/080206111247.htm
Rice University. "Single-molecule Sensing Breakthrough: Optical and Electronic Measurements Made Simultanously." ScienceDaily. www.sciencedaily.com/releases/2008/02/080206111247.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins