Featured Research

from universities, journals, and other organizations

Gene Plays 'Jekyll And Hyde' In Brain Cancer

Date:
February 11, 2008
Source:
Harvard Medical School
Summary:
Perhaps the only positive spin one can put on the brain cancer glioblastoma is that it's relatively uncommon. Other than that, the news is bad. It is nearly always fatal, it tends to strike people in the prime of their lives, and the limited treatment options have changed little over decades. It's no wonder then that many researchers are determined to find new ways treat this poorly understood type of cancer. Researchers have now found that a particular gene is central to the brain cancer glioblastoma and will either fight the tumor or, conversely, help the tumor advance, depending on the tumor's genetic makeup.

Stat3 as oncogene: When EGFR--a cell-surface receptor--mutates in glioblastoma, the Stat3 protein becomes oncogenic and promotes tumor growth. The image on the left shows EGFR-mutated cancerous tissue in which Stat3 is active and thus advancing tumor activity. The right-hand image shows the same tissue without Stat3 activity, resulting in a healthier sample.
Credit: Image courtesy of Harvard Medical School

Perhaps the only positive spin one can put on the brain cancer glioblastoma is that it's relatively uncommon. Other than that, the news is bad. It is nearly always fatal, it tends to strike people in the prime of their lives, and the limited treatment options have changed little over decades. It's no wonder then that many researchers are determined to find new ways treat this poorly understood type of cancer.

One approach focuses on a gene called STAT3. In several tumors, STAT3 takes the role of an oncogene, that is, a gene whose normal functions are derailed and, as a result, becomes a driving force in a tumor's development. Clearly then, blocking STAT3 would deal a major blow to such tumors.

But a new study led by a team at Harvard Medical School has found that STAT3 isn't always the villain. While it does behave as an oncogene in certain types of glioblastoma, in others it becomes what's called a "tumor suppressor gene," a type of gene often responsible for keeping the renegade cancer cells in check.

In other words, the same gene in the same cancer can play a completely different role from one person to the next, depending on genetic nuances between individuals.

"This discovery lays the foundation for a more tailored therapeutic intervention," says Azad Bonni, an associate professor of pathology at Harvard Medical School, and senior author on this study. "And that's really important. You can't just go blindly treating people by inhibiting STAT3."

When most people think of brain cells, they think of neurons, those cells whose electric signaling gives rise to our consciousness. But another class of brain cells called astrocytes (named after their uncanny resemblance to stars) actually outnumber neurons ten to one. Despite their name, astrocytes play a less glitzy role than neurons do. Typically, they're support cells, involved with functions such as providing nutrients to nerve tissue and repairing scars. However, nearly all brain cancers occur in astrocytes, or in the neural stem cells that generate astrocytes.

Bonni, a neurologist and neuroscientist by training, decided to investigate the genetic etiology of glioblastoma by studying whether certain regulatory genes that control the generation of astrocytes during normal development also play a role in these tumors. The logic here is simple: since disease is often the breakdown of a normal biological process, the more we understand how cells get it right, the more we understand what can go wrong. And since STAT3 is a key gene that turns neural stem cells into astrocytes during normal development, what is its role in glioblastoma"

Bonni and two lead authors, Nϊria de la Iglesia and Genevieve Konopka, in collaboration with investigators in the laboratory of Ronald DePinho at the Dana-Farber Cancer Institute, began by genetically manipulating mouse astrocytes, then placing them into a second group of mice whose immune systems had been compromised. The findings surprised them.

Taking advantage of previously published data, the researchers looked closely at how two genes, EGFR and PTEN--whose mutated forms are associated with glioblastoma--affect the function of STAT3 in astrocytes. Bonni's group found when EGFR is mutated, STAT3 is an oncogene; with a PTEN mutation, STAT3 is a tumor suppressor.

"EGFR, in its normal state, is a transmembrane receptor, usually performing its functions at the cell surface," says Bonni. "However, when it's mutated, we find it in the cell's nucleus interacting with STAT3--and turning it into an oncogene. STAT3 itself is not mutated or damaged. It's the process of regulating STAT3 that gets damaged."

With PTEN, it's a completely different story. PTEN is itself a tumor suppressor gene. When PTEN becomes disabled in astrocytes, these potential tumors still have STAT3 standing in their way. This is because STAT3 acts as a tumor suppressor normally in astrocytes. However, as more PTEN becomes disabled, a cascade of molecular events is set in motion with the express purpose of inhibiting STAT3 function and thus turning the tide in the cells toward tumor formation.

The researchers confirmed these findings in human glioblastoma tumors as well.

"The belief that STAT3 can only be an oncogene has been a pretty entrenched dogma in the field," says Bonni, "so we performed many, many experiments to make sure this was correct. It took some very persistent investigators in my lab to get the job done. As a result, we're convinced of our data."

While glioblastoma tends to be uncommon, STAT3 has also been implicated in prostate and breast cancers, so these results may translate to other types of tumors as well.

In addition, the findings contribute to the growing body of evidence for "personalized medicine," showing that many types of cancers contain subgroups that require different treatments.

This research was funded by the Stewart Trust of Washington, D.C., the Armenise-Harvard Foundation, and the Carolyn and Peter Lynch Research Fund.

Journal citation: Genes and Development, Volume 22, Issue 4: February 15, 2008. "Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway" Nϊria de la Iglesia, Genevieve Konopka, Sidharth V. Puram, Jennifer A. Chan, Robert M. Bachoo, Mingjian J. You, David E. Levy,Ronald A. DePinho, and Azad Bonni


Story Source:

The above story is based on materials provided by Harvard Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Harvard Medical School. "Gene Plays 'Jekyll And Hyde' In Brain Cancer." ScienceDaily. ScienceDaily, 11 February 2008. <www.sciencedaily.com/releases/2008/02/080206203112.htm>.
Harvard Medical School. (2008, February 11). Gene Plays 'Jekyll And Hyde' In Brain Cancer. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2008/02/080206203112.htm
Harvard Medical School. "Gene Plays 'Jekyll And Hyde' In Brain Cancer." ScienceDaily. www.sciencedaily.com/releases/2008/02/080206203112.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) — Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) — More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) — Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) — Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins