Featured Research

from universities, journals, and other organizations

Position Sensors: Magnets Know Their Place

Date:
March 3, 2008
Source:
ICT Results
Summary:
Non-contact position sensors are small but important parts of many modern machines. Researchers have used a phenomenon known as magnetoresistance to develop a practical, low-cost position sensor that performs better than existing designs. Commercial production will follow this year.

Non-contact position sensors are small but important parts of many modern machines. Researchers have used a phenomenon known as magnetoresistance to develop a practical, low-cost position sensor that performs better than existing designs. Commercial production will follow this year.

Electronic sensors that record the position of movable objects crop up in practically every machine, from printing presses to space rockets. The average modern car has more than 60 sensors to measure the positions of the crankshaft, throttle, clutch, suspension and dozens of other moving parts. These sensors need to be cheap (€0.5-5), yet very robust and reliable.

The oldest kinds of position sensor are mechanical switches and sliding resistors (potentiometers). Because they depend on direct electric contact, they are vulnerable to wear, corrosion and breakage, so modern designers tend to avoid them.

Instead, non-contact sensors based on magnetic phenomena are popular. In a non-contact sensor, a coil of wire (inductive and galvanometric sensors) or a semiconductor element (‘Hall effect’ sensor) detects the presence of a magnet mounted on another part of the machine.

But traditional magnetic sensors tend to be both insensitive and fairly expensive. And ‘Hall effect’ sensors have the additional disadvantage of being ‘on/off’ devices that cannot track the exact position of an object.

Introducing magnetoresistance

Partners in the MUNDIS project thought they could do better. And their results show they were right, with a market-ready product soon to follow. The EU-funded project developed more sensitive and cheaper position sensors based on magnetoresistance. This phenomenon, which describes how a magnetic field changes the electrical resistance of certain materials, has been known since the nineteenth century, but until recently had no industrial applications.

‘Giant magnetoresistance’ (GMR) was discovered in 1988 and now finds application in computer hard disks. Both GMR and another effect known as thin-film magnetoresistance (TMR) could be used for position sensors. According to MUNDIS coordinator Professor Ricardo Ibarra, however, GMR and TMR are the province of large companies, because they require huge investment in cleanrooms and other equipment developed for the semiconductor industry.

More promising for the EU-funded MUNDIS, Ibarra says, was an effect known as ballistic magnetoresistance (BMR). Electrons have a property called spin (magnetic moment) that allows them to be influenced by a magnetic field as they fly between nanoparticles (hence “ballistic”). When a current passes through nanoparticles of iron oxide deposited on a plastic film, electrons are susceptible to BMR as they travel across nanocontacts between the nanoparticles.

The MUNDIS partners experimented with two different ways of making nanoparticles. The first route, which involves grinding iron oxide with a ball mill, yielded practical sensors that are both sensitive and reasonably cheap. The second method uses electrochemistry to deposit nanoparticles directly from solution.

“We have not finished developing the electrodeposition technique, but it is very promising,” says Ibarra. “It can create devices that are even more sensitive, and they should eventually be cheaper, too.”

Vertical focus

From the start, MUNDIS aimed to create a practical BMR device: a gear stick position sensor for the automotive industry. This is a four-position ‘on/off’ sensor with a target cost of €5, falling to €4 with bulk production.

By January 2008, three months before it was due to finish, the project had shown excellent results. The partners had developed all the parts needed for a complete gear stick position sensor: the film-based sensor itself, the associated printed circuit board, and a magnet carrier. Tests showed that the device can operate reliably for 10 million cycles, as well as withstanding vibration, humidity and thermal stress.

The technology is patented and licensed to two Spanish SMEs who were partners in the project. Aragonesa de Componentes Pasivos (ACP), a manufacturer of electronic components including position sensors, makes the sensor material. Ficosa International, which makes automotive components and systems, then assembles the complete sensor. The cost is even lower than the original target, and the new sensors will be on the market within a few months, Ibarra says.

Tasks remaining to be done include improving control of the initial resistance of the sensor material, and gaining a better understanding of what happens within the nanostructure.

“Although the sensors work well, it may be that not all of the magnetoresistive effect in fact comes from BMR,” says Ibarra. To study the mechanism of BMR in detail, the researchers are now using a focused ion beam to build tiny circuits, less than 1 m in size, involving just a few nanoparticles.

The sensors can be made in almost any shape, Ibarra says, and in principle there is no lower limit to their size. Since smaller sensors are expected to work better than large ones, some innovative applications might emerge.

One exciting potential application is in biosensing. “If we could get a magnetic nanoparticle to stick to a microorganism, then we could use a BMR sensor to detect the magnetic particle and hence the organism,” Ibarra suggests. This is clearly a technology with potential.


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "Position Sensors: Magnets Know Their Place." ScienceDaily. ScienceDaily, 3 March 2008. <www.sciencedaily.com/releases/2008/02/080229133055.htm>.
ICT Results. (2008, March 3). Position Sensors: Magnets Know Their Place. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2008/02/080229133055.htm
ICT Results. "Position Sensors: Magnets Know Their Place." ScienceDaily. www.sciencedaily.com/releases/2008/02/080229133055.htm (accessed April 24, 2014).

Share This



More Computers & Math News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New FCC Rules Trigger Death Of Net Neutrality?

Will New FCC Rules Trigger Death Of Net Neutrality?

Newsy (Apr. 24, 2014) The Federal Communications Commission will reportedly propose new rules for Net neutrality that could undermine the principles of a free and open Web. Video provided by Newsy
Powered by NewsLook.com
Apple Beats Estimates, Most Looking to Second Half of 2014

Apple Beats Estimates, Most Looking to Second Half of 2014

TheStreet (Apr. 24, 2014) TheStreet's Stephanie Link and Real Money Contributor Dan Nathan discuss Apple's first quarter results. Link and Nathan expected the tech giant to lower guidance for the current quarter which they felt could send shares lower and present a buying opportunity. Nathan says options are cheap because Apple has been aggressively buying back shares. Video provided by TheStreet
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins