Featured Research

from universities, journals, and other organizations

Salmonella Bacteria Turned Into Cancer Fighting Robots

Date:
March 31, 2008
Source:
University of Massachusetts Amherst
Summary:
Salmonella bacteria can be turned into tiny terminator robots that venture deep into cancerous tumors where conventional chemotherapy can't reach. Once in place, the bacteria manufacture drugs that destroy cancer cells. This could translate chemotherapy that is more specific, more effective and easier on patients.

Salmonella bacteria can be turned into tiny terminator robots that venture deep into cancerous tumors where conventional chemotherapy can't reach. Once in place, the bacteria manufacture drugs that destroy cancer cells. This could translate chemotherapy that is more specific, more effective and easier on patients.

Related Articles


Neil Forbes of the University of Massachusetts Amherst has received a four-year grant of more than $1 million from the National Institutes of Health to research killing cancer tumors with Salmonella bacteria. Forbes turns the bacteria into tiny terminator robots that use their own flagella to venture deep into tumors where conventional chemotherapy can’t reach. Once in place, the bacteria manufacture drugs that trigger cancer cells to kill themselves.

“When we get the Salmonella bacteria into the part of the tumor where we want them to be, we’ve programmed them to go ape,” says Forbes. “We have the bacteria release a drug to trigger a receptor in cancer cells called the “death receptor,” which induces cancer cells to kill themselves. We’ve already done this in the lab. We’ve done this successfully in cancerous mice, and it dramatically increases their survival rate.”

Normally, mice with tumors all die within 30 days. After receiving this bacterial system and getting a dose of radiation, all the mice in Forbes’ lab tests survived beyond the 30 days, which could potentially translate into many months or years in people.

“It sounds like science fiction, doesn’t it?” says Forbes, an assistant professor in the chemical engineering department. “But Salmonella are little robots that can swim wherever they want. They have propellers in the form of flagella, they have sensors to tell them where they are going and they are also little chemical factories. What we do as engineers is to control where they go, what chemical we want them to make, and when they make it.”

Using bacteria to attack cancer tumors has been tried with only moderate success for decades. But Forbes’ work with Salmonella is introducing a radical improvement called “targeted intratumoral therapeutic delivery,” which sends the bacteria into parts of the tumor that are currently beyond the reach of conventional therapies. This could translate into individualized doses of chemotherapy for human cancer patients, make therapy more specific and effective, give people smaller doses of chemicals while they are being treated and cut down on patient mortality.

The basic problem being addressed by Forbes is that some regions in any cancer tumor are impossible to reach with current chemotherapy drugs. Drug access to the tissue in any tumor is limited by the distribution of its blood vessels. Tissue located farthest from its surrounding blood vessels is the hardest for drugs to reach because the vessels act as their chemical highways into the tumor. Every tumor has a different distribution of blood vessels, depending on the nature of the tumor and the patient’s genetic makeup.

“Think of the region between blood vessels as a sponge,” explains Forbes. “The particles from a therapeutic drug tend to accumulate around the outer portions of the sponge, nearest the blood vessels, and not penetrate to the interior.”

That’s where an unlikely hero, the Salmonella bacterium, comes in. Unlike drugs (which are not alive), Salmonella can take energy from their environment and can “swim” wherever they please. They have their own outboard motors called flagella, and can travel where they want in a tumor, regardless of blood vessels. Forbes’ concept is to use special Salmonella disarmed of their toxicity and fix them with drug payloads so they can swim into these hard-to-reach regions of the tumor and kill the cancer cells there.

“The bacteria, as far as I can tell, are the only therapy that can penetrate deep into tissue, far beyond where blood vessels reach,” says Forbes.

Bacteria naturally seek out dead tissue for food by using sensors that home in on chemicals such as ribose, given off by dying cells. But Forbes doesn’t want his Salmonella robots going to the dead cancer cells already killed off by chemotherapy. He wants them penetrating to the slow-growing, but live, cancer cells that current therapy can’t touch. So his solution is to remove the ribose sensor from Salmonella.

“By knocking out the ribose receptor, we can keep the bacteria away from dead cells, where we don’t need them to go, but get them to travel into slow-growing cells located in hard-to-reach tissue far from blood vessels; the regions currently beyond our therapeutic treatment,” says Forbes.


Story Source:

The above story is based on materials provided by University of Massachusetts Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University of Massachusetts Amherst. "Salmonella Bacteria Turned Into Cancer Fighting Robots." ScienceDaily. ScienceDaily, 31 March 2008. <www.sciencedaily.com/releases/2008/02/080229171124.htm>.
University of Massachusetts Amherst. (2008, March 31). Salmonella Bacteria Turned Into Cancer Fighting Robots. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2008/02/080229171124.htm
University of Massachusetts Amherst. "Salmonella Bacteria Turned Into Cancer Fighting Robots." ScienceDaily. www.sciencedaily.com/releases/2008/02/080229171124.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
Dads-To-Be Also Experience Hormone Changes During Pregnancy

Dads-To-Be Also Experience Hormone Changes During Pregnancy

Newsy (Dec. 18, 2014) A study from University of Michigan researchers found that expectant fathers see a decrease in testosterone as the baby's birth draws near. Video provided by Newsy
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins