Featured Research

from universities, journals, and other organizations

New Target For Cancer Therapy May Improve Treatment For Solid Tumors

Date:
March 5, 2008
Source:
University of Chicago Medical Center
Summary:
Targeting and killing the non-malignant cells that surround and support a cancer can stop tumor growth in mice. Many solid tumors develop elaborate mechanisms to prevent recognition and elimination by the immune system. Due to their genetic instability they often discard the tumor antigen-presenting cell-surface structures that alert the immune system that these cells are harmful.

Targeting and killing the non-malignant cells that surround and support a cancer can stop tumor growth in mice, reports a research team based at the University of Chicago Medical Center in the March 1, 2008, issue of the journal Cancer Research. The discovery offers a new approach to treating cancers that are resistant to standard therapy.

Many solid tumors develop elaborate mechanisms to prevent recognition and elimination by the immune system. Due to their genetic instability they often discard the tumor antigen-presenting cell-surface structures that alert the immune system that these cells are harmful. Without these "flags," the white blood cells fail to recognize and kill infected or cancerous cells. These tumors then often grow rapidly and resist treatment with chemotherapy or efforts to boost the immune system's response to the tumor.

But the stroma, the layers of cells that surround a tumor, can accumulate tumor antigens and present them on their surface. These genetically stable surrounding cells retain the molecules that present tumor antigens, which makes them a good target for immunotherapy, and they often play an enabling role in tumor growth.

"We already knew that targeting the stroma is essential for eradicating established large tumors, because the stroma is like the 'root of the tumor," said study author Hans Schreiber, MD, PhD, professor of pathology at the University of Chicago. "However, effects of current treatments that target stroma are usually transient and not cancer-specific."

"Since cancer is a genetic disease," he said, "we wondered whether mutant proteins are released into the surroundings and picked up by the stroma. If so, we can target the root of the cancer in a cancer-specific way to arrest or eradicate a tumor."

They injected T cells, the immune system's warriors, into mice with large established cancers. These T cells, specifically engineered to recognize the tumor antigen, had no direct impact on the cancerous cells but managed to kill stromal cells. This reduced tumor size and stopped the growth of tumors for more than 80 days.

Although targeting the stroma didn't eliminate all cancer cells, it did stop or slow the growth of well-established cancers after a single injection of T cells.

"Such growth arrest in patients would be an admirable achievement for many cancers," the authors write, "and could also be used as an adjuvant to other therapies."

Tumor eradication is obviously preferable to tumor arrest, the authors note. "We can't target cancer cells when they have lost their antigen-presenting molecules," said co-author Bin Zhang, PhD, a former postdoctoral fellow in Schreiber's laboratory and now assistant professor at the University of Texas Health Sciences Center, San Antonio. "So stroma becomes an ideal alternative target for T cells."

One concern was that other, healthy cells in tissues like the spleen could also pick up the antigens and become a target for T cells, said Zhang. "We did not see this," he added. "Only tumor-derived stromal cells appear to pick up and present tumor antigen."

The next step is to test this approach for melanoma, breast and colon cancer, Zhang said. "We know that stromal cells often present tumor-antigen in these tumors, but have not yet performed T cell therapy on these mice."

They are also studying this approach for human cancers. Early results suggest that "this approach might be useful for the human situation as well," Zhang said.

The National Institutes of Health and the University of Chicago Cancer Research Center supported this research. Additional authors of the paper include Andrea Schietinger, Yang-Xing Fu and Donald A. Rowley from the University of Chicago; Yi Zhang from the Medical University of South Carolina, Charleston; and Natalie Bowerman and David M. Kranz from the University of Illinois, Urbana.


Story Source:

The above story is based on materials provided by University of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago Medical Center. "New Target For Cancer Therapy May Improve Treatment For Solid Tumors." ScienceDaily. ScienceDaily, 5 March 2008. <www.sciencedaily.com/releases/2008/03/080303110156.htm>.
University of Chicago Medical Center. (2008, March 5). New Target For Cancer Therapy May Improve Treatment For Solid Tumors. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/03/080303110156.htm
University of Chicago Medical Center. "New Target For Cancer Therapy May Improve Treatment For Solid Tumors." ScienceDaily. www.sciencedaily.com/releases/2008/03/080303110156.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins