Featured Research

from universities, journals, and other organizations

Carbon Nanotubes Outperform Copper Nanowires As Interconnects

Date:
March 17, 2008
Source:
Rensselaer Polytechnic Institute
Summary:
Researchers have created a road map that brings academia and the semiconductor industry one step closer to realizing carbon nanotube interconnects, and alleviating the current bottleneck of information flow that is limiting the potential of computer chips in everything from personal computers to portable music players. The scientists have created robust quantum models to compare key characteristics of copper and CNTs.

Researchers at Rensselaer Polytechnic Institute have created a road map that brings academia and the semiconductor industry one step closer to realizing carbon nanotube interconnects, and alleviating the current bottleneck of information flow that is limiting the potential of computer chips in everything from personal computers to portable music players.

To better understand and more precisely measure the key characteristics of both copper nanowires and carbon nanotube bundles, the researchers used advanced quantum-mechanical computer modeling to run vast simulations on a high-powered supercomputer. It is the first such study to examine copper nanowire using quantum mechanics rather than empirical laws.

After crunching numbers for months with the help of Rensselaer's Computational Center for Nanotechnology Innovations, the most powerful university-based supercomputer in the world, the research team concluded that the carbon nanotube bundles boasted a much smaller electrical resistance than the copper nanowires. This lower resistance suggests carbon nanotube bundles would therefore be better suited for interconnect applications.

"With this study, we have provided a road map for accurately comparing the performance of copper wire and carbon nanotube wire," said Saroj Nayak, an associate professor in Rensselaer's Department of Department of Physics, Applied Physics, and Astronomy, who led the research team. "Given the data we collected, we believe that carbon nanotubes at 45 nanometers will outperform copper nanowire."

Because of the nanoscale size of interconnects, they are subject to quantum phenomena that are not apparent and not visible at the macroscale, Nayak said. Empirical and semi-classical laws cannot account for such phenomena that take place on the atomic and subatomic level, and, as a result, models and simulations based on those models cannot be used to accurately predict the behavior and performance of copper nanowire. Using quantum mechanics, which deals with physics at the atomic level, is more difficult but allows for a fuller, more accurate model.

"If you go to the nanoscale, objects do not behave as they do at the macroscale," Nayak said. "Looking forward to the future of computers, it is essential that we solve problems with quantum mechanics to obtain the most complete, reliable data possible."

The size of computer chips has shrunk dramatically over the past decade, but has recently hit a bottleneck, Nayak said. Interconnects, the tiny copper wires that transport electricity and information around the chip and to other chips, have also shrunk. As interconnects get smaller, the copper's resistance increases and its ability to conduct electricity degrades. This means fewer electrons are able to pass through the copper successfully, and any lingering electrons are expressed as heat. This heat can have negative effects on both a computer chip's speed and performance.

Researchers in both industry and academia are looking for alternative materials to replace copper as interconnects. Carbon nanotube bundles are a popular possible successor to copper, Nayak said, because of the material's excellent conductivity and mechanical integrity. It is generally accepted that a quality replacement for copper must be discovered and perfected in the next five to 10 years in order to further perpetuate Moore's Law -- an industry mantra that states the number of transistors on a computer chip, and thus the chip's speed, should double every 18-24 months.

Nayak said there are still many challenges to overcome before mass-produced carbon nanotube interconnects can be realized. There are still issues concerning the cost of efficiency of creating bulk carbon nanotubes, and growing nanotubes that are solely metallic rather than their current state being of partially metallic and partially semiconductor. More study will also be required, he said, to model and simulate the effects of imperfections in carbon nanotubes on the electrical resistance, contact resistance, capacitance, and other vital characteristics of a nanotube interconnect.

The research results will be featured in the March issue of Journal of Physics: Condensed Matter.

Rensselaer graduate student Yu Zhou and postdoctoral research assistant Subbalakshmi Sreekala are co-authors of the paper. Materials science and engineering professor Pulickel Ajayan, who is now at Rice University, is also a co-author.

Funding for this project was provided by the New York State Interconnect Focus Center.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Carbon Nanotubes Outperform Copper Nanowires As Interconnects." ScienceDaily. ScienceDaily, 17 March 2008. <www.sciencedaily.com/releases/2008/03/080313095629.htm>.
Rensselaer Polytechnic Institute. (2008, March 17). Carbon Nanotubes Outperform Copper Nanowires As Interconnects. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2008/03/080313095629.htm
Rensselaer Polytechnic Institute. "Carbon Nanotubes Outperform Copper Nanowires As Interconnects." ScienceDaily. www.sciencedaily.com/releases/2008/03/080313095629.htm (accessed July 25, 2014).

Share This




More Computers & Math News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins