Featured Research

from universities, journals, and other organizations

Carbon Nanotubes Outperform Copper Nanowires As Interconnects

Date:
March 17, 2008
Source:
Rensselaer Polytechnic Institute
Summary:
Researchers have created a road map that brings academia and the semiconductor industry one step closer to realizing carbon nanotube interconnects, and alleviating the current bottleneck of information flow that is limiting the potential of computer chips in everything from personal computers to portable music players. The scientists have created robust quantum models to compare key characteristics of copper and CNTs.

Researchers at Rensselaer Polytechnic Institute have created a road map that brings academia and the semiconductor industry one step closer to realizing carbon nanotube interconnects, and alleviating the current bottleneck of information flow that is limiting the potential of computer chips in everything from personal computers to portable music players.

Related Articles


To better understand and more precisely measure the key characteristics of both copper nanowires and carbon nanotube bundles, the researchers used advanced quantum-mechanical computer modeling to run vast simulations on a high-powered supercomputer. It is the first such study to examine copper nanowire using quantum mechanics rather than empirical laws.

After crunching numbers for months with the help of Rensselaer's Computational Center for Nanotechnology Innovations, the most powerful university-based supercomputer in the world, the research team concluded that the carbon nanotube bundles boasted a much smaller electrical resistance than the copper nanowires. This lower resistance suggests carbon nanotube bundles would therefore be better suited for interconnect applications.

"With this study, we have provided a road map for accurately comparing the performance of copper wire and carbon nanotube wire," said Saroj Nayak, an associate professor in Rensselaer's Department of Department of Physics, Applied Physics, and Astronomy, who led the research team. "Given the data we collected, we believe that carbon nanotubes at 45 nanometers will outperform copper nanowire."

Because of the nanoscale size of interconnects, they are subject to quantum phenomena that are not apparent and not visible at the macroscale, Nayak said. Empirical and semi-classical laws cannot account for such phenomena that take place on the atomic and subatomic level, and, as a result, models and simulations based on those models cannot be used to accurately predict the behavior and performance of copper nanowire. Using quantum mechanics, which deals with physics at the atomic level, is more difficult but allows for a fuller, more accurate model.

"If you go to the nanoscale, objects do not behave as they do at the macroscale," Nayak said. "Looking forward to the future of computers, it is essential that we solve problems with quantum mechanics to obtain the most complete, reliable data possible."

The size of computer chips has shrunk dramatically over the past decade, but has recently hit a bottleneck, Nayak said. Interconnects, the tiny copper wires that transport electricity and information around the chip and to other chips, have also shrunk. As interconnects get smaller, the copper's resistance increases and its ability to conduct electricity degrades. This means fewer electrons are able to pass through the copper successfully, and any lingering electrons are expressed as heat. This heat can have negative effects on both a computer chip's speed and performance.

Researchers in both industry and academia are looking for alternative materials to replace copper as interconnects. Carbon nanotube bundles are a popular possible successor to copper, Nayak said, because of the material's excellent conductivity and mechanical integrity. It is generally accepted that a quality replacement for copper must be discovered and perfected in the next five to 10 years in order to further perpetuate Moore's Law -- an industry mantra that states the number of transistors on a computer chip, and thus the chip's speed, should double every 18-24 months.

Nayak said there are still many challenges to overcome before mass-produced carbon nanotube interconnects can be realized. There are still issues concerning the cost of efficiency of creating bulk carbon nanotubes, and growing nanotubes that are solely metallic rather than their current state being of partially metallic and partially semiconductor. More study will also be required, he said, to model and simulate the effects of imperfections in carbon nanotubes on the electrical resistance, contact resistance, capacitance, and other vital characteristics of a nanotube interconnect.

The research results will be featured in the March issue of Journal of Physics: Condensed Matter.

Rensselaer graduate student Yu Zhou and postdoctoral research assistant Subbalakshmi Sreekala are co-authors of the paper. Materials science and engineering professor Pulickel Ajayan, who is now at Rice University, is also a co-author.

Funding for this project was provided by the New York State Interconnect Focus Center.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Carbon Nanotubes Outperform Copper Nanowires As Interconnects." ScienceDaily. ScienceDaily, 17 March 2008. <www.sciencedaily.com/releases/2008/03/080313095629.htm>.
Rensselaer Polytechnic Institute. (2008, March 17). Carbon Nanotubes Outperform Copper Nanowires As Interconnects. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2008/03/080313095629.htm
Rensselaer Polytechnic Institute. "Carbon Nanotubes Outperform Copper Nanowires As Interconnects." ScienceDaily. www.sciencedaily.com/releases/2008/03/080313095629.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Android's Popularity Doesn't Mean Profits For Google

Android's Popularity Doesn't Mean Profits For Google

Newsy (Feb. 26, 2015) Seventy percent of smartphones shipped last year were Android but that OS only accounted for 11 percent of total smartphone profits. Video provided by Newsy
Powered by NewsLook.com
Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Lenovo Hack May Be Retaliation For 'Superfish' Vulnerability

Newsy (Feb. 26, 2015) Lenovo&apos;s website was hacked by what appears to be the infamous Lizard Squad group. The attack seems to be related to Lenovo&apos;s "Superfish" controversy. Video provided by Newsy
Powered by NewsLook.com
Google's Artificial Intelligence Can Dominate Atari Video Games

Google's Artificial Intelligence Can Dominate Atari Video Games

Buzz60 (Feb. 26, 2015) Google&apos;s artificial intelligence, DeepMind, has figured out how to play and master a handful of Atari video games. Brett Larson explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins