Featured Research

from universities, journals, and other organizations

'Designer Enzymes' Created By Chemists Have Defense And Medical Uses

Date:
March 20, 2008
Source:
University of California - Los Angeles
Summary:
Chemists have created "designer enzymes" -- a major milestone in computational chemistry and protein engineering. Designer enzymes will have applications for biological warfare defense by deactivating pathogenic biological agents, and for creating more effective medications.

UCLA chemists design active sites of new man-made enzymes.
Credit: Copyright UC Regents

Chemists from UCLA and the University of Washington have succeeded in creating "designer enzymes," a major milestone in computational chemistry and protein engineering.

Related Articles


The research, by a UCLA chemistry group led by professor Kendall Houk and a Washington group headed by biochemist David Baker, is reported March 19 in the advance online publication of the journal Nature. The Defense Advanced Research Projects Agency (DARPA) supported the study.

Designer enzymes will have applications for defense against biological warfare, by deactivating pathogenic biological agents, and for creating more effective medications, according to Houk.

"The design of new enzymes for reactions not normally catalyzed in nature is finally feasible," Houk said. "The goal of our research is to use computational methods to design the arrangement of groups inside a protein to cause any desired reaction to occur."

"Enzymes are such potent catalysts; we want to harness that catalytic ability," said research co-author Jason DeChancie, an advanced UCLA chemistry graduate student working with Houk's group. "We want to design enzymes for reactions that naturally occurring enzymes don't do. There are limits on the reactions that natural enzymes carry out, compared with what we can dream up that enzymes can potentially do."

Combining chemistry, mathematics and physics, the scientists report in the Nature paper that they have successfully created designer enzymes for a chemical reaction known as the Kemp elimination, a non-natural chemical transformation in which hydrogen is pulled off a carbon atom.

In a previous paper, published in the journal Science on March 7, the chemists reported another successful chemical reaction that uses designer enzymes to catalyze a retro-aldol reaction, which involves breaking a carbon-carbon bond. The aldol reaction is a key process in living organisms associated with the processing and synthesis of carbohydrates. This reaction is also widely used in the large-scale production of commodity chemicals and in the pharmaceutical industry, Houk said.

"Previous reports of designed enzymes have not been very successful, and some have been withdrawn," said Houk, UCLA's lead author of both papers. "That is hardly surprising, considering the challenge of designing in days or weeks what nature has perfected over billions of years of evolution. The rate enhancements by our designer enzymes are modest and hardly competitive, so far, with those observed for their natural counterparts."

"We hope with improvements in technology, that we can close the gap between designer enzymes and natural enzymes," DeChancie said.

"Most scientists thought this would be impossible, and we felt the same way after many failures," said Fernando Clemente, a former UCLA postdoctoral scholar and co-author of the Science paper. "But improvements in design and sophistication eventually led to success."

Clemente is now at Gaussian Inc., the company that created the software used in the Houk group's research.

The implementation of the aldol reaction in the active site of an enzyme has been an important challenge. The reaction involves at least six chemical transformations, requiring UCLA scientists to compute all six chemical steps with their corresponding transition states. The structures were then combined in such a way to allow all six steps to occur.

Both studies were funded by DARPA, the U.S. Defense Department's central research and development organization, with additional federal support from the National Science Foundation.

Natural enzymes, which are relatively large protein molecules, are the powerful catalysts that control the reactions that sustain life. They play a central role in the chemical reactions involved in the transformation of food into the essential nutrients that provide energy, among many other critical functions.

Houk's team of 30 computational chemists uses quantum mechanical calculations to explore chemical reactions with supercomputers. Quantum mechanics is the fundamental theory that can predict all chemistry.

Houk and Baker's research groups have worked together for three years. Using algorithms and supercomputers, the UCLA chemists design the active site for the enzymes -- the area of the enzymes in which the chemical reactions take place -- and give a blueprint for the active site to their University of Washington colleagues. Baker and his group then use their computer programs to design a sequence of amino acids that fold to produce an active site like the one designed by Houk's group; Baker's group produces the enzymes.

Houk's group uses modern computational methods based on the physical laws of quantum mechanics to study in detail the mechanisms of chemical reactions. They have been involved in the DARPA-funded Protein Design Processes program, whose goal is to develop the technology that would make possible the design and creation of man-made working enzymes. The role of UCLA chemists has been the design of the active sites of the enzymes. By exploring multiple combinations of chemical groups, they can determine those that are most suitable to facilitate any given chemical transformation. Then, they determine the precise three-dimensional arrangement of these chemical groups, which is critical for the specificity and activity of the enzyme, with an accuracy of less than a hundredth of a nanometer.

Enzymes are the ultimate "green" catalysts by performing under ambient conditions in water, Houk said.

This technology will find tremendous applications, Houk said.

How far off are designer enzymes with important applications?

"I think we're there," DeChancie said. "These papers are showing the technology is now in place."


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "'Designer Enzymes' Created By Chemists Have Defense And Medical Uses." ScienceDaily. ScienceDaily, 20 March 2008. <www.sciencedaily.com/releases/2008/03/080319160050.htm>.
University of California - Los Angeles. (2008, March 20). 'Designer Enzymes' Created By Chemists Have Defense And Medical Uses. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2008/03/080319160050.htm
University of California - Los Angeles. "'Designer Enzymes' Created By Chemists Have Defense And Medical Uses." ScienceDaily. www.sciencedaily.com/releases/2008/03/080319160050.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins