Featured Research

from universities, journals, and other organizations

Nanotechnology: Femtogram-level Chemical Measurements Now Possible

Date:
March 28, 2008
Source:
University of Illinois at Urbana-Champaign
Summary:
Finding a simple and convenient technique that combines nanoscale structural measurements and chemical identification has been an elusive goal. With current analytical instruments, spatial resolution is too low, signal-to-noise ratio too poor, sample preparation too complex or sample size too large to be of good service. Now, researchers have demonstrated a method for simultaneous structural and chemical characterization of samples at the femtogram level.

William King, professor of mechanical science and engineering, left; Rohit Bhargava, professor of bioengineering; and Keunhan Park, postdoctoral research associate, have demonstrated a method for simultaneous structural and chemical characterization of samples at the femtogram level (a femtogram is one quadrillionth of a gram) and below.
Credit: Photo by L. Brian Stauffer

Finding a simple and convenient technique that combines nanoscale structural measurements and chemical identification has been an elusive goal. With current analytical instruments, spatial resolution is too low, signal-to-noise ratio too poor, sample preparation too complex or sample size too large to be of good service.

Now, researchers at the University of Illinois have demonstrated a method for simultaneous structural and chemical characterization of samples at the femtogram level (a femtogram is one quadrillionth of a gram) and below.

The measurement technique combines the extraordinary resolution of atomic force microscopy and the excellent chemical identification of infrared spectroscopy.

"We demonstrated that imaging, extraction and chemical analysis of femtogram samples can be achieved using a heated cantilever probe in an atomic force microscope," said William P. King, a Kritzer Faculty Scholar and professor of mechanical engineering.

King and colleagues describe the technique in a paper accepted for publication in the journal Analytical Chemistry, and posted on its Web site.

The new technique hinges upon a special silicon cantilever probe with an integrated heater-thermometer. The cantilever tip temperature can be precisely controlled over a temperature range of 25 to 1,000 degrees Celsius.

Using the cantilever probe, researchers can selectively image and extract a very small sample of the material to be analyzed. The mass of the sample can be determined by a cantilever resonance technique.

To analyze the sample, the heater temperature is raised to slightly above the melting point of the sample material. The material is then analyzed by complementary Raman or Fourier transform infrared spectroscopic imaging, which provides a molecular characterization of samples down to femtogram level in minutes.

"Fourier transform infrared and Raman spectroscopic imaging have become commonplace in the last five to ten years," said Rohit Bhargava, a professor of bioengineering. "Our method combines atomic force microscopy with spectroscopic imaging to provide data that can be rapidly used for spectral analyses for exceptionally small sample sizes."

To clean the tip for reuse, the tip is heated to well above the decomposition temperature of the sample -- a technique similar to that used in self-cleaning ovens.

"Since the tip can be heated to 1,000 degrees Celsius, most organic materials can be readily vaporized and removed in this manner," King said.

As a demonstration of the technique, the researchers scanned a piece of paraffin with their probe, and removed a sample for analysis. They then used Raman and Fourier transform infrared spectroscopy to chemically analyze the sample. After analysis, the paraffin was removed by thermal decomposition, allowing reuse of the probe.

"We anticipate this approach will help bridge the gap between nanoscale structural analysis and conventional molecular spectroscopy," King said, "and in a manner widely useful to most analytical laboratories."

With King and Bhargava, co-authors of the paper are postdoctoral researcher and lead author Keunhan Park and graduate student Joonho Lee. All four researchers are affiliated with the university's Beckman Institute.

The work was funded by the National Science Foundation through the Center for Nanoscale Chemical-Electrical-Mechanical Manufacturing Systems, and by the U. of I.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Nanotechnology: Femtogram-level Chemical Measurements Now Possible." ScienceDaily. ScienceDaily, 28 March 2008. <www.sciencedaily.com/releases/2008/03/080327172149.htm>.
University of Illinois at Urbana-Champaign. (2008, March 28). Nanotechnology: Femtogram-level Chemical Measurements Now Possible. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2008/03/080327172149.htm
University of Illinois at Urbana-Champaign. "Nanotechnology: Femtogram-level Chemical Measurements Now Possible." ScienceDaily. www.sciencedaily.com/releases/2008/03/080327172149.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins