Featured Research

from universities, journals, and other organizations

Potential Hydrogen-storage Compound Could Fuel Hydrogen-Powered Cars

Date:
April 4, 2008
Source:
National Institute of Standards and Technology
Summary:
One of the key engineering challenges to building a clean, efficient, hydrogen-powered car is how to design the fuel tank. Storing enough raw hydrogen for a reasonable driving range would require either impractically high pressures for gaseous hydrogen or extremely low temperatures for liquid hydrogen. A novel class of materials potentially could enable a practical hydrogen fuel tank for cars.

MOF-74 resembles a series of tightly packed straws comprised mostly of carbon atoms (white balls) with columns of zinc ions (blue balls) running down the walls. Heavy hydrogen molecules (green balls) adsorbed in MOF-74 pack into the tubes more densely than they would in solid form.
Credit: NIST

One of the key engineering challenges to building a clean, efficient, hydrogen-powered car is how to design the fuel tank. Storing enough raw hydrogen for a reasonable driving range would require either impractically high pressures for gaseous hydrogen or extremely low temperatures for liquid hydrogen. In a new paper* researchers at the National Institute of Standards and Technology's Center for Neutron Research (NCNR) have demonstrated that a novel class of materials could enable a practical hydrogen fuel tank.

A research team from NIST, the University of Maryland and the California Institute of Technology studied metal-organic frameworks (MOFs). One of several classes of materials that can bind and release hydrogen under the right conditions, they have some distinct advantages over competitors. In principle they could be engineered so that refueling is as easy as pumping gas at a service station is today, and MOFs don't require the high temperatures (110 to 500 C) some other materials need to release hydrogen.

In particular, the team examined MOF-74, a porous crystalline powder developed at the University of California at Los Angeles. MOF-74 resembles a series of tightly packed straws comprised of mostly carbon atoms with columns of zinc ions running down the inside walls. A gram of the stuff has about the same surface area as two basketball courts.

The researchers used neutron scattering and gas adsorption techniques to determine that at 77 K (-196 C), MOF-74 can adsorb more hydrogen than any unpressurized framework structure studied to date--packing the molecules in more densely than they would be if frozen in a block.

NCNR scientist Craig Brown says that, though his team doesn't understand exactly what allows the hydrogen to bond in this fashion, they think the zinc center has some interesting properties.

"When we started doing experiments, we realized the metal interaction doesn't just increase the temperature at which hydrogen can be stored, but it also increases the density above that in solid hydrogen," Brown says. "This is absolutely the first time this has been encountered without having to use pressure."

Although the liquid-nitrogen temperature of MOF-74 is not exactly temperate, it's easier to reach than the temperature of solid hydrogen (-269 C), and one of the goals of this research is to achieve energy densities great enough to be as economical as gasoline at ambient, and thus less costly, temperatures. MOF-74 is a step forward in terms of understanding energy density, but there are other factors left to be dealt with that, once addressed, could further increase the temperature at which the fuel can be stored. Fully understanding the physics of the interaction might allow scientists to develop means for removing refrigeration or insulation, both of which are costly in terms of fuel economy, fuel production, or both.

The work was funded in part through the Department of Energy's Hydrogen Sorption Center of Excellence.

* Y. Liu, H. Kabbour, C.M. Brown, D.A. Neumann and C.C. Ahn. Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks. Langmuir, ASAP Article 10.1021/la703864a. Published March 27, 2008.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Potential Hydrogen-storage Compound Could Fuel Hydrogen-Powered Cars." ScienceDaily. ScienceDaily, 4 April 2008. <www.sciencedaily.com/releases/2008/04/080402100010.htm>.
National Institute of Standards and Technology. (2008, April 4). Potential Hydrogen-storage Compound Could Fuel Hydrogen-Powered Cars. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/04/080402100010.htm
National Institute of Standards and Technology. "Potential Hydrogen-storage Compound Could Fuel Hydrogen-Powered Cars." ScienceDaily. www.sciencedaily.com/releases/2008/04/080402100010.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins