Featured Research

from universities, journals, and other organizations

Hybrid Computer Materials May Lead To Faster, Cheaper Technology

Date:
April 3, 2008
Source:
University of Missouri-Columbia
Summary:
A modern computer contains two different types of components: magnetic components, which perform memory functions, and semiconductor components, which perform logic operations. Computer scientists are working to combine these two functions in a single hybrid material. This new material would allow seamless integration of memory and logical functions and is expected to permit the design of devices that operate at much higher speeds and use considerably less power than current electronic devices.

 A modern computer contains two different types of components: magnetic components, which perform memory functions, and semiconductor components, which perform logic operations. A University of Missouri researcher, as part of a multi-university research team, is working to combine these two functions in a single hybrid material. This new material would allow seamless integration of memory and logical functions and is expected to permit the design of devices that operate at much higher speeds and use considerably less power than current electronic devices.

Related Articles


Giovanni Vignale, MU physics professor in the College of Arts and Science and expert in condensed matter physics, says the primary goal of the research team, funded by a $6.5 million grant from the Department of Defense, is to explore new ways to integrate magnetism and magnetic materials with emerging electronic materials such as organic semiconductors.

The research may lead to considerably more compact and energy-efficient devices. The processing costs for these hybrid materials are projected to be much less than those of traditional semiconductor chips, resulting in devices that should be less expensive to produce.

"In this approach, the coupling between magnetic and non-magnetic components would occur via a magnetic field or flow of electron spin, which is the fundamental property of an electron and is responsible for most magnetic phenomena," Vignale said. "The hybrid devices that we target would allow seamless integration of memory and logical function, high-speed optical communication and switching, and new sensor capabilities."

Vignale studies processes by which magnetic information can be transferred from a place to another.

"One of the main theoretical tools I will be using for this project is the time-dependent, spin-current density functional theory," Vignale said. "It is a theory to which I have made many contributions over the years. The results of these theoretical calculations will be useful both to understand and to guide the experimental work of other team members."

The research grant was awarded to the University of Iowa as part of a multi-university research initiative (MURI). Vignale joins Michael Flattι (University of Iowa), Andy Kent (New York University), Yuri Suzuki (University of California, Berkeley) and Jeremy Levy (University of Pittsburgh). John Prater of the Army Research Office will monitor the program.


Story Source:

The above story is based on materials provided by University of Missouri-Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of Missouri-Columbia. "Hybrid Computer Materials May Lead To Faster, Cheaper Technology." ScienceDaily. ScienceDaily, 3 April 2008. <www.sciencedaily.com/releases/2008/04/080403131859.htm>.
University of Missouri-Columbia. (2008, April 3). Hybrid Computer Materials May Lead To Faster, Cheaper Technology. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/04/080403131859.htm
University of Missouri-Columbia. "Hybrid Computer Materials May Lead To Faster, Cheaper Technology." ScienceDaily. www.sciencedaily.com/releases/2008/04/080403131859.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins