Featured Research

from universities, journals, and other organizations

More Safety For Cell Phone Batteries

Date:
April 14, 2008
Source:
Fraunhofer-Gesellschaft
Summary:
Researchers have created a novel safer lithium-ion battery. It is based on a polymer electrolyte, which is -- unlike the liquid electrolyte in conventional lithium-ion batteries -- not inflammable. Lithium-ion batteries supply the power for cell phones and PDAs, and larger devices such as laptops, cordless screwdrivers and lawnmowers are becoming increasingly dependent on this power source.

Fraunhofer researchers have created a novel lithium-ion battery. It is based on a polymer electrolyte, which is – unlike the liquid electrolyte in conventional lithium-ion batteries – not inflammable. A test set-up for redox flow batteries will be on display at the Hannover Messe Show in Gernany show. This makes it possible to compare different redox systems in a single test set-up.

Lithium-ion batteries supply the power for cell phones and PDAs, and larger devices such as laptops, cordless screwdrivers and lawnmowers are becoming increasingly dependent on this power source. The advantage of these power storage devices lies in their high energy density and voltage (up to four volts). In terms of safety, however, they have one disadvantage – the organic electrolytes are inflammable and can easily catch fire.

This has already resulted in several fires and subsequent recall campaigns. Researchers at the Fraunhofer Institute for Silicate Research ISC in Würzburg have optimized the safety of these batteries. “We have succeeded in replacing the inflammable organic electrolytes with a non-flammable polymer that retains its shape,” says ISC team leader Dr. Kai-Christian Möller.

“This considerably enhances the safety of lithium-ion batteries. What’s more, because it is a solid substance, the electrolyte cannot leak out of the battery.” The polymer used by the researchers is derived from the Ormocer® group of substances – a compound with silicon-oxygen chains that form an inorganic structure to which organic side chains become attached. The big challenge is to ensure that the polymers will efficiently conduct the lithium ions that supply the power for the cell phone and the PDA. “Normally, the more solid a polymer is, the less conductive it becomes. But we had numerous parameters that we could adjust – for example, we can use coupling elements with two, three or four arms. As a result, we have more possibilities with Ormocer®s than with a single type of plastic,” says Möller.

A prototype of the new lithium-ion batteries already exists, and the researchers will be presenting it at Hannover Messe (Hall 13, Stand E20). However, between three and five years are likely to elapse before the battery will cross shop counters in laptop computers, PDAs and cordless screwdrivers, the expert believes. The conductivity of the polymer needs further improvement to enable the battery to deliver or store as much power as possible in as short a time as possible. Once this happens, though, it is quite realistic to expect this type of battery – in conjunction with a capacitor – to be able to compete with the lead batteries in cars.

Redox flow batteries store solar energy Solar cells can be seen on the roofs of more and more houses today. The energy supplied by the sun and the wind is also increasingly being used on a large scale – in wind turbines and solar parks. But the energy supplied by the sun and the wind does not usually correspond to power requirements: On sunny days the solar cells often deliver more electricity than is needed, while solar energy may be in short supply when the sky is overcast. The amount of energy harvested from wind turbines fluctuates in a similar way.

In private solar energy plants, the surplus energy is stored in lead batteries until it is needed. The drawback of these storage systems is that they can only survive a limited number of cycles and normally have to be replaced after three to five years. In wind and solar parks, the energy is conserved by pumped storage plants. These, too, have a disadvantage: They have a relatively low rate of efficiency, which means that a lot of energy is lost. What is more, they take up a great deal of space. Redox flow batteries offer an alternative to lead batteries and pumped storage plants: They have a comparable energy density, but their service life is nearly ten times as long as that of lead batteries. So far, however, they are quite expensive in relation to their performance and energy density.

Researchers at the Fraunhofer Institute for Chemical Technology ICT in Pfinztal intend to change that situation in the years ahead: “We have developed the prototype of a redox flow battery that enables us to test various electrode materials, membranes and electrolytes as flexibly as possible,” reports ICT group leader Dr. Jens Tübke. “In this way, we can compare different redox systems in the same test set-up. This allows us to work out precisely what are the pros and cons of each system. It is not possible to compare the systems on the basis of existing documentation, as of course everyone measures them in a different test set-up.”

This research will be presented at Hannover Messe in Germany on April 21 - 25.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "More Safety For Cell Phone Batteries." ScienceDaily. ScienceDaily, 14 April 2008. <www.sciencedaily.com/releases/2008/04/080411151001.htm>.
Fraunhofer-Gesellschaft. (2008, April 14). More Safety For Cell Phone Batteries. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2008/04/080411151001.htm
Fraunhofer-Gesellschaft. "More Safety For Cell Phone Batteries." ScienceDaily. www.sciencedaily.com/releases/2008/04/080411151001.htm (accessed August 29, 2014).

Share This




More Matter & Energy News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins