Featured Research

from universities, journals, and other organizations

Breakthrough In Nanotechnology By Uncovering Conductive Property Of Carbon-based Molecules

Date:
April 21, 2008
Source:
University of Pittsburgh
Summary:
Researchers have discovered that certain organic -- or carbon-based -- molecules exhibit the properties of atoms under certain circumstances and, in turn, conduct electricity as well as metal. Detailed in Science, the finding is a breakthrough in developing nanotechnology that provides a new strategy for designing electronic materials, including inexpensive and multifunctional organic conductors that have long been considered the key to smaller, cheaper and faster technologies.

University of Pittsburgh researchers have discovered that certain organic--or carbon-based--molecules exhibit the properties of atoms under certain circumstances and, in turn, conduct electricity as well as metal. Detailed in the April 18 edition of Science, the finding is a breakthrough in developing nanotechnology that provides a new strategy for designing electronic materials, including inexpensive and multifunctional organic conductors that have long been considered the key to smaller, cheaper, and faster technologies.

The Pitt team found that the hollow, soccer-ball-shaped carbon molecules known as fullerenes can hold and transfer an electrical charge much like the most highly conductive atoms, explained project head Hrvoje Petek, a professor of physics and chemistry in Pitt's School of Arts and Sciences and codirector of Pitt's Petersen Institute for NanoScience and Engineering. The research was performed by Pitt post-doctoral associates Min Feng and Jin Zhao.

When an electron was introduced into a fullerene molecule, the shape of the electron distribution mimicked that of a hydrogen atom or an atom from the alkali metal group, which includes lithium, sodium, and potassium. Moreover, when two fullerenes were placed next to each other on a copper surface, they showed the electron distribution of their chemical bond and appeared as H2, a hydrogen molecule. The assembly exhibited metal-like conductivity when the team extended it to a wire 1-molecule-wide.

"Our work provides a new perspective on what determines the electronic properties of materials," Petek said. "The realization that hollow molecules can have metal-like conductivity opens the way to develop novel materials with electronic and chemical properties that can be tailored by shape and size."

Although the team worked with fullerenes, the team's results apply to all hollow molecules, Petek added, including carbon nanotubes--rolled, 1-atom-thick sheets of graphite 100,000 times smaller than a human hair.

The team's research shows promise for the future of electronics based on molecular conductors. These molecule-based devices surpass the semiconductor and metal conductors of today in terms of lower cost, flexibility, and the ability to meld the speed and power of optics and electronics. Plus, unlike such inorganic conductors as silicon, molecule-based electronics can be miniaturized to a 1-dimensional scale (1-molecule-wide), which may enable them to conduct electricity with minimal loss and thus improve the performance of an electronic device.

Traditionally, the problem has been that organic conductors have not conducted electrical current very well, Petek said. The Pitt team's discovery could enable scientists to finally overcome that problem, he added.

"Metal-like behavior in a molecular material--as we have found--is highly surprising and desirable in the emerging field of molecular electronics," he said.

"Our work is a unique example of how nanoscale materials can be used as atom-sized building blocks for molecular materials that could replace silicon and copper in electronic devices, luminescent displays, photovoltaic cells, and other technologies."


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Cite This Page:

University of Pittsburgh. "Breakthrough In Nanotechnology By Uncovering Conductive Property Of Carbon-based Molecules." ScienceDaily. ScienceDaily, 21 April 2008. <www.sciencedaily.com/releases/2008/04/080417142457.htm>.
University of Pittsburgh. (2008, April 21). Breakthrough In Nanotechnology By Uncovering Conductive Property Of Carbon-based Molecules. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2008/04/080417142457.htm
University of Pittsburgh. "Breakthrough In Nanotechnology By Uncovering Conductive Property Of Carbon-based Molecules." ScienceDaily. www.sciencedaily.com/releases/2008/04/080417142457.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins