Featured Research

from universities, journals, and other organizations

Scientists Make Chemical Cousin Of DNA For Use As New Nanotechnology Building Block

Date:
April 30, 2008
Source:
Arizona State University
Summary:
In the rapid and fast-growing world of nanotechnology, researchers are continually on the lookout for new building blocks to push innovation and discovery to scales much smaller than the tiniest speck of dust. While scientists are fully exploring the promise of DNA nanotechnology, some researchers are working to give scientists brand new materials to aid their designs. One team has now made the first self-assembled nanostructures composed entirely of glycerol nucleic acid -- a synthetic analog of DNA.

The only chemical difference between DNA and a synthetic cousin, GNA, is in the sugar molecule. GNA uses a three-carbon sugar called glycerol rather than the five-carbon deoxyribose used in DNA. The sugar provides the chemical backbone for nucleic acid polymers, anchoring a phosphate molecule and nitrogenous base (B).
Credit: Biodesign Institute at Arizona State University

In the rapid and fast-growing world of nanotechnology, researchers are continually on the lookout for new building blocks to push innovation and discovery to scales much smaller than the tiniest speck of dust.

Related Articles


In the Biodesign Institute at Arizona State University, researchers are using DNA to make intricate nano-sized objects. Working at this scale holds great potential for advancing medical and electronic applications. DNA, often thought of as the molecule of life, is an ideal building block for nanotechnology because they self-assemble, snapping together into shapes based on natural chemical rules of attraction. This is a major advantage for Biodesign researchers like Hao Yan, who rely on the unique chemical and physical properties of DNA to make their complex nanostructures.

While scientists are fully exploring the promise of DNA nanotechnology, Biodesign Institute colleague John Chaput is working to give researchers brand new materials to aid their designs. In an article recently published in the Journal of the American Chemical Society, Chaput and his research team have made the first self-assembled nanostructures composed entirely of glycerol nucleic acid (GNA)--a synthetic analog of DNA.

"Everyone in DNA nanotechnology is essentially limited by what they can buy off the shelf," said Chaput, who is also an ASU assistant professor in the Department of Chemistry and Biochemistry. "We wanted to build synthetic molecules that assembled like DNA, but had additional properties not found in natural DNA."

The DNA helix is made up of just three simple parts: a sugar and a phosphate molecule that form the backbone of the DNA ladder, and one of four nitrogenous bases that make up the rungs. The nitrogenous base pairing rules in the DNA chemical alphabet fold DNA into a variety of useful shapes for nanotechnology, given that "A" can only form a zipper-like chemical bond with "T" and "G" only pair with "C."

In the case of GNA, the sugar is the only difference with DNA. The five carbon sugar commonly found in DNA, called deoxyribose, is substituted by glycerol, which contains just three carbon atoms.

Chaput has had a long-standing interest in tinkering with chemical building blocks used to make molecules like proteins and nucleic acids that do not exist in nature. When it came time to synthesize the first self-assembled GNA nanostructures, Chaput had to go back to basics. "The idea behind the research was what to start with a simple DNA nanostructure that we could just mimic."

The first self-assembled DNA nanostructure was made by Ned Seeman's lab at Columbia University in 1998, the very same laboratory where ASU professor Hao Yan received his Ph.D. Chaput's team, which includes graduate students Richard Zhang and Elizabeth McCullum were not only able to duplicate these structures, but, unique to GNA, found they could make mirror image nanostructures.

In nature, many molecules important to life like DNA and proteins have evolved to exist only as right-handed. The GNA structures, unlike DNA, turned out to be 'enantiomeric' molecules, which in chemical terms means both left and right-handed.

"Making GNA is not tricky, it's just three steps, and with three carbon atoms, only one stereo center," said Chaput. "It allows us to make these right and left-handed biomolecules. People have actually made left-handed DNA, but it is a synthetic nightmare. To use it for DNA nanotechnology could never work. It's too high of a cost to make, so one could never get enough material."

The ability to make mirror image structures opens up new possibilities for making nanostructures. The research team also found a number of physical and chemical properties that were unique to GNA, including having a higher tolerance to heat than DNA nanostructures. Now, with a new material in hand, which Chaput dubs 'unnatural nucleic acid nanostructures,' the group hopes to explore the limits on the topology and types of structure they can make.

"We think we can take this as a basic building block and begin to build more elaborate structures in 2-D and see them in atomic force microscopy images," said Chaput. "I think it will be interesting to see where it will all go. Researchers come up with all of these clever designs now."


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Scientists Make Chemical Cousin Of DNA For Use As New Nanotechnology Building Block." ScienceDaily. ScienceDaily, 30 April 2008. <www.sciencedaily.com/releases/2008/04/080429075327.htm>.
Arizona State University. (2008, April 30). Scientists Make Chemical Cousin Of DNA For Use As New Nanotechnology Building Block. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2008/04/080429075327.htm
Arizona State University. "Scientists Make Chemical Cousin Of DNA For Use As New Nanotechnology Building Block." ScienceDaily. www.sciencedaily.com/releases/2008/04/080429075327.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins