Featured Research

from universities, journals, and other organizations

Nano-designed Transistors With Disordered Materials, But High Performance

Date:
May 6, 2008
Source:
University of Surrey
Summary:
The Holy Grail for transistor designers has been the requirement to be able to get high performance at reduced costs over very large substrate areas. Transistors on cheap and flexible substrates like glass and plastics are currently unable to deliver such performance and therefore do not lend themselves to seamless monolithic integration of increased electronic functions on human interface devices (displays and sensors).

The Holy Grail for transistor designers has been the requirement to be able to get high performance at reduced costs over very large substrate areas. Transistors on cheap and flexible substrates like glass and plastics are currently unable to deliver such performance and therefore do not lend themselves to seamless monolithic integration of increased electronic functions on human interface devices (displays and sensors).

At present, high performance transistors are only available in crystalline materials which are expensive and have to be attached ex-situ onto larger area substrates, which adds to the expense and complexity of system design. If both the electronics and display substrates can be integrated onto one platform, it would usher a new dawn in immersive and personal electronics. Individuals will thus be able to communicate, send and receive information of value, and access data about their current environment and health status with freedom, at leisure, and in comfort.

However, in general, the deposition of semiconductor films used to make transistors on such substrates has to be carried out at low temperatures to preserve substrate integrity. As a result, the quality of the organic or inorganic semiconductor films is severely constrained, and has a dramatic influence on the transistor performance.

Engineers now propose the use of clever transistor structure designs to overcome some of the issues with obtaining suitably low power and high speed operations in standard material systems.

In the first collaborative work with Hitachi Central Research Laboratory, Japan, researchers at the Advanced Technology Institute of the University of Surrey have experimentally and theoretically demonstrated that for transistors of disordered silicon films, superior switching performance (low leakage current, and steep sub-threshold slope) can be achieved by making the conduction channel in the transistor very thin. A higher ION/IOFF ratio, which exceeds 1011, can be achieved for devices with a 2.0-nm-thick channel. Another seminal work from the same research laboratory at Surrey, is on the newly developed source-gated transistor (SGT) concept by Professor John Shannon.

Compared to a field-effect transistor, the SGTs can operate with very short source-drain separations even with a thick gate insulator layer to achieve high speed, good stability and superior control of current uniformity, providing a significant advantage in terms of the fabrication process. Dr Xiaojun Guo, one of the lead investigators, comments: "Engineering of the transistor structure itself rather than the channel material can lead to improved device performance. It will enable the design of high-performance large area circuits and systems based on low-cost reliable material processes".

Professor Ravi Silva, Director of the Advanced Technology Institute states: "This work will help extend the already well established CMOS fabrication technologies for use in large area applications such as displays and sensors, which are at the heart of consumer electronics.

The ATI is fortunate that we have been at the forefront of two potential technologies that can lead to enhanced device performance in disordered materials by clever nano-scale structural design of disordered transistors. This type of work sponsored by the EPSRC forms the bedrock for future electronic technologies".

This research will be published in the journal 'Science', and a more detailed version of the nano-designed transistor will appear in 'IEEE Electron Device Letters'.

Journal references:

X. Guo and S.R.P. Silva, 'High-Performance Transistors by Design', Science, vol 320, 02 May 2008

X. Guo, T. Ishii, and S.R.P. Silva, 'Improving Switching Performance of Thin-Film Transistors in Disordered Silicon', to appear in IEEE Electron Device Letters, vol 29 Issue 6, 2008.


Story Source:

The above story is based on materials provided by University of Surrey. Note: Materials may be edited for content and length.


Cite This Page:

University of Surrey. "Nano-designed Transistors With Disordered Materials, But High Performance." ScienceDaily. ScienceDaily, 6 May 2008. <www.sciencedaily.com/releases/2008/05/080502114843.htm>.
University of Surrey. (2008, May 6). Nano-designed Transistors With Disordered Materials, But High Performance. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2008/05/080502114843.htm
University of Surrey. "Nano-designed Transistors With Disordered Materials, But High Performance." ScienceDaily. www.sciencedaily.com/releases/2008/05/080502114843.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins