Featured Research

from universities, journals, and other organizations

Cell's 'Power Plant' Genes Raise Vision Disorder Risk

Date:
May 8, 2008
Source:
Vanderbilt University Medical Center
Summary:
Genetic variation in the DNA of mitochondria -- the "power plants" of cells -- contributes to a person's risk of developing age-related macular degeneration, investigators report. The study is the first to examine the mitochondrial genome for changes associated with AMD, the leading cause of blindness in Caucasians over age 50.

Genetic variation in the DNA of mitochondria -- the "power plants" of cells -- contributes to a person's risk of developing age-related macular degeneration (AMD), Vanderbilt investigators report May 7 in the journal PLoS One.

Related Articles


The study is the first to examine the mitochondrial genome for changes associated with AMD, the leading cause of blindness in Caucasians over age 50.

"Most people don't realize that we have two genomes," said lead author Jeff Canter, M.D., M.P.H., an investigator in the Center for Human Genetics Research. "We have the nuclear genome -- the "human genome" -- that makes the cover of all the magazines, and then we also have this tiny genome in mitochondria in every cell."

Canter teamed with Jonathan Haines, Ph.D., and Paul Sternberg, M.D., experts in AMD genetics and treatment, to examine whether a particular variation in the mitochondrial genome is associated with the disease. The genetic change occurs in about 10 percent of Caucasians, referred to as mitochondrial haplogroup T.

"We suspect that this variant will be one of a small group of important genetic variations that underlie AMD," Canter said. "By knowing this, we have a better chance of predicting accurately who will get the disease."

AMD affects as many as 10 million people in the United States, robbing them of the sharp central vision necessary for everyday activities like reading, driving, watching television, and identifying faces. The toll of the disease is expected to mount as the U.S. population ages.

The genetics of AMD has been a "hot" area lately, Canter said. Haines led a team that identified a variant in the Complement Factor H (CFH) gene as accounting for up to 43 percent of AMD. Variations in ApoE2 and a gene called LOC387715 on chromosome 10 have also been linked to the disease, and Haines and colleagues demonstrated an interaction between the chromosome 10 gene and smoking in raising AMD risk.

The current study also examined variation in these nuclear genes in 280 cases and 280 age-matched controls, and demonstrated that the mitochondrial genome variation was independent of the known nuclear factors.

"We're at the stage where we can use genetic information to predict who is likely to develop AMD well before they actually develop it," said Haines, director of the Center for Human Genetics Research. "Now we can conduct trials of preventive treatments -- something's that never been possible before."

Sternberg, G.W. Hale Professor and Chairman of the Vanderbilt Eye Institute, is leading a trial to test preventive measures in AMD.

Variation in the mitochondrial genome reflects human migrations and different environmental exposures. Changes in the mitochondrial DNA can alter the efficiency of energy generation and lead to over-production of "reactive oxygen species" -- free radicals that can damage the cell.

"By identifying genetic changes associated with the mitochondria, our results lend additional confirmatory evidence for the role of oxidative stress in AMD," Sternberg said. "This supports study of interventions that attempt to bolster our antioxidant defenses."

"I can see a day when physicians order genotyping on patients at a certain age to determine risk for AMD and put things in place -- dietary changes, antioxidants, increased screening -- that could prevent the disease," Canter added. "This would be truly personalized medicine."

Canter emphasized that variation in the mitochondrial genome has been linked to a wide variety of diseases including neurodegenerative diseases like Parkinson's and Alzheimer's as well as breast cancer and trauma survival.

"It's important to realize that there's another genome in the mitochondria, and even though there are not many genes there, they're important," Canter said.


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University Medical Center. "Cell's 'Power Plant' Genes Raise Vision Disorder Risk." ScienceDaily. ScienceDaily, 8 May 2008. <www.sciencedaily.com/releases/2008/05/080507083949.htm>.
Vanderbilt University Medical Center. (2008, May 8). Cell's 'Power Plant' Genes Raise Vision Disorder Risk. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/05/080507083949.htm
Vanderbilt University Medical Center. "Cell's 'Power Plant' Genes Raise Vision Disorder Risk." ScienceDaily. www.sciencedaily.com/releases/2008/05/080507083949.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins