Featured Research

from universities, journals, and other organizations

Groundbreaking Methodology For Identify Cancerous Cells

Date:
May 12, 2008
Source:
Northeastern University
Summary:
Recognizing the distinction between healthy and cancerous cells has traditionally been up to the eye of highly-trained cytologists and pathologists. While the majority of the resulting diagnoses are accurate, new technology can enhance the accuracy and alleviate the physical strain on the human observer. Now scientists have developed an automatic method based on vibrational microspectroscopy that identifies the presence of metastatic cancer cells without the need for staining, and without human input.

Recognizing the distinction between healthy and cancerous cells has traditionally been up to the eye of highly-trained cytologists and pathologists. While the majority of the resulting diagnoses are accurate, new technology can enhance the accuracy and alleviate the physical strain on the human observer. Northeastern University professor Max Diem and his team have developed an automatic method based on vibrational microspectroscopy that identifies the presence of metastatic cancer cells without the need for staining, and without human input.

The innovative method aids classical cytology (where visually inspection is used to detect changes in the morphology of cells obtained from bodily fluids, exfoliation or thin needle biopsy) and classical pathology (where stained tissue sections are examined visually).

“The idea behind the methodology is to examine the chemical composition of cells, as opposed to relying solely on the morphology,” said Diem, Professor of Chemistry and Chemical Biology at Northeastern University. “Abnormalities in exfoliated cells, for instance in Pap smears, can be difficult to discern visually, however, by looking at the biochemical composition of the cell with the help of vibrational spectroscopy, we can detect specific cellular changes indicating cancer.”

Funded by the National Cancer Institute (NCI) of the National Institutes of Health (NIH), the novel method developed by Diem and his team uses a quantifiable and quantitative approach to measure cervical, urothelial or buccal exfoliated cells. As disease changes the chemical composition of the cell, the instrument is able to detect variations in cellular properties without the need to stain the slides and inspect them visually.

“The method is entirely machine-based and computer-interpreted, and thus, reduces the workload in diagnostic laboratories,” added Diem. “It allows us to increase the overall accuracy and decrease the time required to render medical diagnoses.”

Under another grant from NCI, the researchers are working on developing an operating room-based instrument that will produce a diagnosis of breast cancer cells in the axillary lymph nodes within 15 minutes after excision. The goal is to produce instrumentation and software that can analyze lymph node sections in the operating room, and provide the surgeon with an objective diagnosis of the spread of disease.

“We have identified three major milestones for this particular research,” said Diem. “We want to develop a rapid sample preparation methodology, refine the imaging instrumentation, and construct reliable databases and algorithms for the detection.”

Underscoring the university’s emphasis on interdisciplinary research, Diem’s laboratory also collaborates with the Center for Subsurface Sensing and Imaging Systems (CenSISS) at Northeastern University, making the professor one of the non-engineer members of the CenSISS group.


Story Source:

The above story is based on materials provided by Northeastern University. Note: Materials may be edited for content and length.


Cite This Page:

Northeastern University. "Groundbreaking Methodology For Identify Cancerous Cells." ScienceDaily. ScienceDaily, 12 May 2008. <www.sciencedaily.com/releases/2008/05/080509170224.htm>.
Northeastern University. (2008, May 12). Groundbreaking Methodology For Identify Cancerous Cells. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2008/05/080509170224.htm
Northeastern University. "Groundbreaking Methodology For Identify Cancerous Cells." ScienceDaily. www.sciencedaily.com/releases/2008/05/080509170224.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins