Featured Research

from universities, journals, and other organizations

New MRI Technique Detects Subtle But Serious Brain Injury

Date:
May 13, 2008
Source:
UT Southwestern Medical Center
Summary:
A new technique for analyzing magnetic resonance imaging data can reveal serious brain injury missed by current tests and help predict a patient's degree of recovery. In brain injuries sustained when the head suddenly stops moving — during a motor vehicle accident, for instance — the force can shear and damage nerve cells. This kind of injury does not show up on computerized tomography scans, the researchers said, and magnetic resonance imaging does not yet reliably detect this type of injury.

A new technique for analyzing magnetic resonance imaging data, developed by researchers at UT Southwestern Medical Center, can reveal serious brain injury missed by current tests and help predict a patient’s degree of recovery.

In brain injuries sustained when the head suddenly stops moving — during a motor vehicle accident, for instance — the force can shear and damage nerve cells. This kind of injury does not show up on computerized tomography scans, the researchers said, and magnetic resonance imaging does not yet reliably detect this type of injury.

“This is a new way of measuring a common injury that has been overlooked,” said Dr. Ramσn Dνaz-Arrastia, professor of neurology and senior author of the paper, which appears in the May issue of the journal Archives of Neurology.

“No matter how many seat belts and airbags there are, if you hit a tree at 50 miles an hour, you’re going to have this kind of injury,” Dr. Dνaz-Arrastia said. “It may account for up to half of the traumatic brain injuries from car accidents.”

The injury typically affects the portions of nerve cells in the brain called the axons, the long, thin extensions of nerve cells that reach from one area to another. When the brain is subjected to powerful, inertial forces, axons can be deformed and damaged. This type of trauma, called diffuse axonal injury, or DAI, is often difficult to diagnose, Dr. Dνaz-Arrastia said.

In the study, the researchers performed MRI analysis on 12 people, ranging in age from 16 to 37, who had severe closed-head brain injury, who were either able to give consent or whose legal guardians gave consent.

From the patients’ point of view, the test was the same as undergoing an ordinary MRI. The difference was that the researchers used a new mathematical analysis, called diffusion tensor tractography, to detect diffuse axonal injury. They also analyzed the MRI data using an existing method called FLAIR, for fluid attenuation and inversion recovery.

The new analysis tested for how easily water could move around in the brain in the areas surrounding cells. When the axons are damaged, they swell, absorbing the water around them and leaving less that can move around between cells. As the axons die, they release the water, resulting in more water surrounding the cells.

By comparing multiple MRI images over time, the researchers could detect this change in water motion. Their analysis focused on three areas of the brain — the corpus callosum, the fornix and the peduncular projections — that consist largely of axons that project from one part of the brain to another.

The researchers tested the patients’ degree of consciousness and ability to care for themselves immediately after their injuries, as well as six to 11 months later. One patient died, and one had fully recovered, with the rest showing partial recovery. One patient could not be located for the follow-up.

In most of the brain areas studied, the degree of diffuse axonal injury, which is reflected by a reduction of the motion of water around the never cells, was significantly linked to how much the patients improved over time, the researchers found. In contrast, FLAIR analysis did not show a statistically significant link with the degree of recovery.

Further studies are under way to include more patients, which will provide more power to the analysis. The researchers will also study other areas of the brain that are at risk for diffuse axonal injury to see whether MRI analysis can be useful in those regions as well.

Other UT Southwestern researchers involved in the study were Dr. Michael Devous, professor of radiology; Dr. Roddy McColl, associate professor of radiology; Dr. Christopher Madden, assistant professor of neurological surgery; Dr. Carlos Marquez de la Plata, assistant professor of psychiatry; Drs. Anthony Whittemore and Evelyn Babcock, both assistant professors of radiology; Carol Moore and Kan Ding, both clinical research coordinators in neurology; and medical students Tiffany Rickbeil, Julia Dobervich, David Kroll, Bao Dao and Nisha Mohindra.

Lead author Jun-Yi Wang; Dr. Khamid Bakhadirov; and Dr. Herve Abdi from the department of cognition and neuroscience at UT Dallas also participated in the study.

The work was supported by the National Institute on Disability and Rehabilitation Research and the National Institutes of Health.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "New MRI Technique Detects Subtle But Serious Brain Injury." ScienceDaily. ScienceDaily, 13 May 2008. <www.sciencedaily.com/releases/2008/05/080512163852.htm>.
UT Southwestern Medical Center. (2008, May 13). New MRI Technique Detects Subtle But Serious Brain Injury. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/05/080512163852.htm
UT Southwestern Medical Center. "New MRI Technique Detects Subtle But Serious Brain Injury." ScienceDaily. www.sciencedaily.com/releases/2008/05/080512163852.htm (accessed August 1, 2014).

Share This




More Mind & Brain News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) — Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) — If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins